IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On the relation between cavity-dressed states, Floquet states, RWA and semiclassical models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 7193
(http://iopscience.iop.org/0305-4470/30/20/020)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.110
The article was downloaded on 02/06/2010 at 06:03

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 7193-7215. Printed in the UK PIl: S0305-4470(97)83412-9

On the relation between cavity-dressed states, Floquet
states, RWA and semiclassical models

S Guérin, F Monti, J-M Dupont ash H R Jauslin
Laboratoire de Physique, CNRS, Univegsite Bourgogne, BP 400, 21011 Dijon, France

Received 14 April 1997, in final form 30 June 1997

Abstract. We show that Floquet states can be constructed as strong-field limits of cavity-
dressed states. The interaction between laser beams propagating outside the cavity with atoms
or molecules are described by Floquet states, constructed from dressed states of average photon
numberz quantized in a cavity of volumé&, by taking the limitV — oo, i1 — oo, while

keeping the photon density = i1/V constant. Thus, Floquet theory can be seen as a fully
quantum-mechanical model in the sense that it describes the photon exchanges between matter
and radiation containing a large amount of photons. We discuss in this context adiabatic Floquet
theory to treat a slow time dependence of the laser amplitude, to describe pulses, and of its
frequency (chirping).

1. Introduction

The control of dynamical processes by intense laser fields is extensively studied in atomic
and molecular physics. Efficient tools to treat these phenomena are based on the notion of
dressed states, characterizing the stationary states of the molecule dressed by a classical or
a quantized radiation field. A method often used to construct dressed states starts with a
semiclassical model (i.e. a quantized atom perturbed by a time-dependent classical field),
and then invoking the rotating-wave approximation (RWA). This approximation is valid
only in the study of a few levels perturbed by a weak and near-resonant field [1]. The
new laser sources provide very intense pulsed fields, with the possibility of time-swept
frequencies [2—4], for which the RWA is not well adapted, since the resonance conditions
for different levels cannot be simultaneously met. In this paper, we present the theory of
Floguet states in a formulation that allows us to make a clear connection with the theory of
cavity-dressed states [5-7]. We present a construction of Floquet states as large intensity
and infinite volume limits of cavity-dressed states. The infinite volume limit is needed in
order to take into account the fact that the laser pulse propagates in free space, as opposed
to a cavity. Floquet theory gives a precise framework to describe the exchange of a single
or a few photons between an intense laser and an atom or molecule. Floquet states can be
considered as an intermediate description between quantized cavity-dressed states (which
are well adapted to treat intracavity processes) and the semiclassical model. They retain the
feature of cavity-dressed states of being able to describe single-photon exchanges, since the
considered mode of the radiation field is fully quantized. With the semiclassical model they
share the possibility of describing pulses by a (slow) modulation of the coupling amplitude,
and to include effects like time-swept frequencies (‘chirping’). These phenomena cannot be
easily incorporated into cavity-dressed state models, since the intensity of the field is not
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determined by the coupling constant in the Hamiltonian, but by the initial condition of the
guantized radiation field. In the Floquet approach the intensity of the field is completely
determined in the Hamiltonian.

Furthermore, we show that the semiclassical model can be recovered from the Floquet
approach as a particular form of an interaction representation, together with the choice of
coherent states as initial conditions. This construction is related to the analysis of [8—12].
Since the model contains only one (or a few) strongly populated photon modes, it cannot
describe spontaneous emission. Its predictions are thus only valid for times that are short
compared with the life-times of the relevant molecular or atomic levels.

We also summarize the close connection between the Floquet formalism and the widely
used treatment of light-matter interaction with the RWA approach. The essential point of
the RWA approach is that the coupling term in the semiclassical Hamiltonian, e.g. for a two-
level system coupled with a periodic time-dependent field, is substituted by an approximation
which allows us to obtain explicit solutions of the time evolution. These are obtained by first
transforming the Sclkidinger equation with a time-dependent Hamiltonian into one with a
time-independent Hamiltonian. This transformation is unitary, time dependent, and has the
same period as the perturbing field. The time-independent Hamiltonian obtained in this way
is interpreted in the literature [1] as an effective Hamiltonian containing the information
on the atom ‘dressed’ by the radiation field. This general idea is precisely realized in
Floguet theory, and without the need to invoke any approximation (like near resonance
or small intensity) [13,14]. It has been shown in [15, 16] that the Floquet formalism
can be alternatively interpreted as a procedure to find a unitary operator that yields an
evolution equation with a time-independent Hamiltonian. This unitary transformation can
be explicitly expressed in terms of the eigenfunctions of the quasi-energy operator (or
Floguet Hamiltonian). Furthermore, the connection with the concepts of cavity-dressed
states mentioned above gives a complete picture of dressed states for an atom or molecule
interacting in free space with a laser. The shape of the laser pulse and a chirped frequency
can be naturally treated by applying adiabatic principles to the Floquet states. The quasi-
energies can be represented as a function of the slow time-dependent parameters in quasi-
energy diagrams. Quasi-energy diagrams for frequency modulation consist essentially of
straight lines, except near avoided crossings where transitions between the dressed states
occur [17,4]. In section 5, we discuss the relation between the slopes of the lines and the
relative photon numbers, which provide a useful technique to attribute physical labels to
the states.

In appendices A and B we provide mathematical proofs of the main results.

2. Construction of Floguet states from dressed states in a cavity

In a cavity, the dressed states represent the stationary states of an atom or molecule
interacting with discrete modes of the quantized electromagnetic radiation [7]. The cavity
allows a natural quantization of the radiation, in which, to each mode of frequenttere

is a corresponding harmonic oscillator of that frequency. Our goal is to study the exchanges
of photons between the molecule and the laser field outside the cavity.

2.1. The Floquet theory

The Floquet formalism can be constructed from two different points of view: one approach
starts with a semiclassical model and the other one from a completely quantized model in
a cavity. We first present the construction of the Floquet formalism from the semiclassical
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model, and then we establish the relation with the cavity-dressed states. Our formulation
allows a direct connection to the phase representation of photon fields.

Ouir first starting point is a semiclassical model, in which the laser field is described by
a classical time-dependent periodic electric figld The time dependence of the periodic
Hamiltonian is introduced through the time evolution of the initial phé&g¢ = 6 + wt
[18, 8,19, 20]:

H = H(x,0(t) = Hy— u(x)F (6 + ot) (1)

where . (x) represents the dipole moment of the molecule. The semiclassicabdiuter
equation

iﬁ%w =H(x,0())gp peH 2

is defined on a Hilbert spade, which can be of infinite or finite dimension (e.g. Mlevel
modelsH = CV). The initial phase& appears as a parameter. One can think of (2) as
a family of equations parametrized by the angle We denote the corresponding family
of propagators by (t, to; 6). The quasi-energy operatd¢, or Floquet Hamiltonian, is
constructed as follows. We define an enlarged Hilbert space

K=H®L ©))

where £ := L,(S', d9/27) denotes the space of square integrable functions on the circle
St of length 2r. We first lift the family of operatord/(t, to; 6) (defined on’) into the
operator acting on the enlarged spateby treating the dependence éras a multiplication
operator. This operator is unitary i@.

The Floquet HamiltoniaiX is then defined as the infinitesimal generator of the following
one-parameter (— tg) family of unitary operators

T, Ut 10, 0)T;, =: e KO = 1y (1 — 19, 0) (4)
where the translation operat@f acts ong e Lo(St, d§/27), by

T.£(0) = £(0)) (5)
and can be expressed as

,Tt — ea)t@/ae. (6)

We remark that the time evolution of the phaie) = 6 + wr can be seen as a classical
flow on the circleS! and7; is the corresponding Koopman operator [21].

From this definition, the quasi-energy operator, or Floquet Hamiltorkgnacting on
the enlarged spac€ can be written as

9
K(@©)=H(®) — |hw@. (7)

This formulation leads to the well-established properties of the Floquet states and the quasi-
energies (eigenfunctions and eigenvalueX f stationary states, eigenfunction expansions,
etc. We also point out the easy generalization of this formulation to the quasi-periodic case
(i.e. the case with several incommensurable frequengies (ws, ..., ®y), in which case

K = H(®) —ihw-3/30, with § = (04, ..., 0,) [22-25].

In a second approach we will establish a precise relation between dressed states in a
cavity and the Floquet formalism. We show that the Floquet HamiltoKiaran be obtained
exactly from the dressed Hamiltonian in a cavity, in the limit of infinite cavity volume and
intense laser field. This gives a precise formulation of the statement suggested K [8]:
representghe dressed Hamiltonian of the molecule interacting in free space with a field
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containing a large number of photand/oreover, we establish the physical interpretation
of the operator

.0

|89 (8)
in the limit of a large number of photons as thelative photon number operator It
characterizes the relative photon number of the field with respect to the averagkee
variation of the average d¥, in the Floquet formalism gives the number of photons gained
or lost (depending on the sign) by the field.

Nr=

2.2. Dressed states in intense laser fields

We consider a molecule with Hamiltonia#, interacting with one mode of the
electromagnetic radiation polarized in thalirection, where we assume an electric dipole
coupling with momenfu denotingu = - € 7, 26],

Him = Ho(x) @ 15 + 1y @ hwa'a — n(x) ® i€a — ab). 9)

The degrees of freedom of the molecule are represented by the varialoleé Hy(x) acts

on the Hilbert spacé{. The mode of the laser with frequeneyis described by the number
operator of a harmonic oscillator, which can be expressed in terms of the annihilation and
creation operators, a. They act on the Fock spacE generated by the stationary states

|n) of the harmonic oscillatorH, ), acts on the enlarged space

Hv=H®F. (10)
The coupling constant is given by

hw

11
280V ( )

whereg is the vacuum permitivity, and the volume of the cauvity.

We note that, with the cavity-dressed state model (9), the field intensity does not appear
explicitly. It depends on the average number of photons contained in the initial state of
the field. The connection between this model and the Floquet formulation is given by the
following property. Since the radiation is not confined in a cavity, but propagates and
interacts with the molecule in free space, we have to take the limit

V — oo (infinite cavity volume),

n — oo (large photon number average),

p = n/V = constant (constant photon density).

In this limit, the dressed Hamiltonian is identical to the quasi-energy oper&tor

— — 0 .
Hm — hon — —Iha)ﬁ + Hp— pEsing =K (12)

[20R
E= | (13)
€0

To show this relation, we use the phase representatidf) @f as formulated by Bialynicki—
Birula [27—30]. We construct an isomorphism between the Fock space and thepace
defined as a subspace 6f:= L»(S, d9/2x), the square integrable periodic functions of
the angled (i.e. on the circleSt), generated by the basis functiofig*?); —i < k < 4-o0}:

In) € F <« &%) € Liy with 71 + k = n. (14)

where
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In the limit 7 — oo we obtain the whole space

Lio =3 Ly (S — and Hn =S K:=HQL, (S — ). (15)
2 2

By this isomorphism, the creation, annihilation and photon-number operators &nd N)

have a corresponding representation acting’pn, which we denote respective&lﬂ, g

and N,‘,y@:

‘ . 9 .
allny=vn+1n+1) «—>al, = /i — i%éePﬁ (16a)
a|n)=\/ﬁ|n—l) <—>aﬁ,9=e_'9‘/ﬁ—I%Pﬁ (16))

_ .0
Nin) = d'aln) = n|n) «— Nijg = <n — IBQ) P; (16c)

where P; = Y 10 - |€X)(€*?] is the projector onC; 4. The operatorszgﬂ, az.o and Nj g

are defined on the whole spate(S*, d9/2w). On the subspacg; 4, the isomorphism can
be verified by considering their action on the basis (14). The operator in the coupling term

becomes
+ g /- .0 _ .0
Apo — anl,G =P; (e |9\/n — Ifae — \/n — Ifae e'0> P; (17)

the Hamiltonian is written as
H = Ho(x) ® P + 1y @ hoNi g — p(x) ® i€ (azg — al o). (18)

We remark that this is an exact correspondence, which is just a precise expression of Dirac’s
transformation formalism of quantum mechanics [31, 32].
The explicit writing of the projectof; in (16) is motivated by the fact that in this way
the operatorddo(x) ® P;, Nig, anp, a;e and HL(”N? are also well defined in the total space
L = L»(St, d9/27), and the discussion of the limit — oo becomes conceptually clearer.
In [27, 28] the formal hypothesis

.0
—i— < 1
I89<<n (9)

is invoked to approximate

,/ﬁ—iai)zx/r:z,/l—’;;:«/ﬁ—i—O(;ﬁ)

which leads to
(aip — a;,e)/x/ﬁ 2% (e — d%) = —2ising. (20)

In the limit V — oo, i — oo, keeping the photon density = 7/ V constant, we obtain
the interaction term

, [2phew .
i€(amo — a:flye) — Zow sing. (21)

We introduce the laser intensity per unit surfdce
I = %SoCEZ =hodpn (22)
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with the photon velocity, the field amplitudeE and the photon flowbp, = 7iic/ V. This
allows us to identify the interaction constant of equation (21) witlof equation (12) as
E = /2phw/go. We obtain thus the Floguet Hamiltoniah of equation (12).

The formal hypothesis (19) must be interpreted in relation with the functions on which
—id/060 acts. The statement is that if all the stafg’)} that are relevant in the dynamics
are such thatk| « n, i.e. if only a few photons are exchanged between light and matter
compared to the average photon numbecontained in the laser field, thethe dressed
Hamiltonian H}) can be identified with the Flogquet Hamiltonia.

We give in what follows a more precise formulation of this construction based on
the dynamics of the coupled system. Sing&!) and K are both well defined on
H® Lo(S*, d9/2rr), we can compare the time evolutions generated by the two Hamiltonians
of any initial stateyg € H ® L:

Theorem For N-level models H# = CV), given any initial stateyy € H ® L, there is
convergence of the dynamics
lim e—i(HL"KA’/E—n‘w)rwo _ e—iKz/FwO. (23)

V,n—o00
n/V=p

The detailed statement and the proof of this theorem is given in appendix A.

2.3. Connection with the semiclassical formulation: interaction representation and
coherent states

From the formulation of the Floquet formalism given above, we can establish the
precise connection between the dynamics in the enlarged d¢patafined by the Floquet
Hamiltonian K, and the one defined by the semiclassical HamiltoniaH iwith a classical
description of the electric field [8]:

The dynamics of the Floquet Hamiltoniankin where is a dynamical variable, is equivalent,

in the interaction representation, to the semiclassical 8dhrger evolution ir, whered is
considered as a parameter corresponding to the fixed initial phase, provided that the initial
photon state in the Floquet model is a coherent state.

For other initial states, as, for example, photon-number states, the Floguet model is not
equivalent to the semiclassical model; it contains more structure concerning the photons.

In the enlarged spad€, the phas@ of the photons is a quantum-mechanical dynamical
variable. It does not have a sharp value in the photon numbers states for example. The
uncertainty relations between phase and relative photon number are of the same nature as
for the cavity-mode photons, as described in [29] for example. The phase takes a sharp
value only for coherent states, as described in sections 2.3.2 and 2.3.4, which allows us to
make the connection with the semiclassical model.

2.3.1. Interaction representation.The Schédinger equation of the Floquet Hamiltonian
in IC

— 0

|h5¢(r) = Ky (1) (24)

can be expressed equivalently in an interaction representation defined by the unitary
transformation

P (1) = Ul () (1) (25)
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where
Uor(t) = e /% =T, (26)

is the free photon-field propagator, which we recognize as being identically the Koopman
operator (6) used in the Floquet construction of section 2.1. Using equation (4), we obtain

¢@) =T,y t) = TUk(t — to,0)T_1,¢ (f0)
= U (1, to; 0)¢ (t0)
and the evolution equation in this representation becomes

iﬁ%qb(t) = H(O + wt)p(1) (27)

where¢ (r) € K, i.e. H(® + wr) is still interpreted as an operator acting on the enlarged
Hilbert spacelC, which, with respect to the variable is a multiplication operator.

Although this equation looks formally like the semiclassical &dimger equation (2),
we emphasize that it is still different since it is defined in the enlarged Hilbert Spaued
the phase does not have a definite value, since it is a dynamical variable on the same
footing asx. In order to recover the semiclassical equation from (27) we have to reduce
it to an equation defined in the Hilbert spake This can be achieved, as we show in the
following, by choosing the initial condition of the photon field as a coherent state.

2.3.2. Coherent states in the limit — oo. In this section we show that the coherent
states are represented in Floquet theory by a generalized furiggjof), which is real, and
depends o — 6y, wheref, € S* is a fixed angle, and

(g, (0))2 = 278(0 — ). (28)

This can be obtained as follows. The photon-field coherent states are eigenvectors of the
annihilation operator

ale) = ala) o = |ale %, (29)

In the usual Fock-number state representation they are given, up to a phase factor, by
2 > %
o) = e 192N Ty, 30
; 7 (30)

In the phase representation they can be written as
o 9) = e /ZZ e'<" o _ glod /ZZ o] e'<" Do) (31)

(where¢ is an arbitrary constant phase that we have chosen-=a&6y). In order to obtain
the representation of coherent states in Floquet theory we have tdotake/n and then
apply the limitiz — oo.

This can be rigorously done directly using the representation (31), as we show in
appendix B. Here we discuss an alternative construction that is formal but gives a useful
intuition. We use an approximate expression of the coherent states forlaoipained in
[28], by developing

1.0 1.0
ao =~ne? [1—Zi— e (1—- =i— ). 32
a0 =i Vo d o V" 2ii 90 (32)
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This leads to the following asymptotic expression [28] for the normalized coherent state
corresponding tax = +/ne %, obtained as a solution of ¥(1 — i/(2ﬁ)8/89)¢(§;” =
e—i90¢éﬁ):

oy = % exp(—2i[1 — cog6 — 6o) — i(SiN@ — 6o) — (6 — 6p))]} (33)
where the normalization constant is

v = e o(4n) (34)
with Iy a Bessel function, which behaves asymptotically as

Io(4n) = /0271 dge exp(4n cosy) e (8::)1/2 (35)
Therefore

|, 0)2 ~ (8" exp{—4i[L — cos(6 — 6o)]} (30)

noticing that the function exXp-4i[1 — coS6@ — 6p)]} behaves like exp-2i(6 — 6p)?} for
n — 0o, we obtain

|5, (O)I7 ~ 2786 — 60) (37)

wheres (0 — 6p) is the analogue on the circi& of the usual Dirac’s delta function.
_We note that since the phase term in (31) (or in (33)) is odd in6y, we obtain that
DL (0) — g, () With @4, () real and

(@5 (8))2 —> 218(6 — bo). (38)

Furthermore, using the well known properties of the expectation valuag"odn coherent
states, we obtain

<(Dg;>(9) ’_iaf’e‘ q;é’;)(g)> 0 foralli (39)
L

<<1>§;;>(9) '(—i)’";’em q>§;;>(9)> — 0 m>=2. (40)
Ln—>oo

The subscripts in the scalar product symbqlg () indicate on which space they act.

We conclude thus that in Floquet theory the photon coherent states are represented by the

‘square root of as-function’, that we denote bybg, (6) = (27)Y/281/2(8 — 6p). Since we

will be interested in expectation values, ori§,|? will appear in our calculations. In

appendix C we discuss some of the formal calculus rules{feté — 6p).

2.3.3. Expectation values for general initial states of the photon fidiar a general initial
condition of the photon fielg(#) € £, we remark that the evolution of the initial condition
¢(x) ® £(0) can be obtained from the one with the initial conditiptx) ® 1 (where the
constant function & €*=99 is the relative number state of zero photons):

Uk (t,0)(p(x) ®E0)) =T_,U(t,0;0)(p(x) ®E®B))
=£0 —wt)U(1,0,0 — wt)(p(x) @ 1)
=& —w)Uk (1, 0)(p(x) ® 1) (41)
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(sinceU(t, 0; 0) is a multiplication operator with respect 8. As a consequence, for any
observableM : KL — K that with respect t® is a multiplication operator, we can write the
expectation value as

(M)(1) = (9  EIUL(YMUK (1|9 @ &)xc

> do 2, oot
= [ ORI .0 0M 6 + 00U G0l

Zdg
:/0 o [EOPp(t: 0)IM© + w0l (5 0))e (42)

where we denote by(z; 6) = U(t, 0; 0)¢ the semiclassical evolution with initial phase
6 of the initial conditionp € H. In particular, for an observabla of the molecule (i.e.
A ® 1,) we have

2 de
(A)(@) = / 7|€(9)|2(¢(I; ONAlp(t; 0))4. (43)
0 T

2.3.4. Expectation values on coherent states; relation with the semiclassical mdel.
have stated that we can recover evolution of the semiclassical model from the Floquet
evolution in the interaction representation by taking initial states in which the photon field
is in a coherent state. This can be formulated more precisely by the following statements.
If we take an initial condition of the formg (1 = 0) = (27)Y2¢(x) ® 81/2(6 — 6p) then

(i) if A:H — H is an observable of the molecule, then according to equation (43)

27 (¢ ® 81/2(0 — 00) U (1) (A ® U)Ug ()19 ® 81/2(80 — b0))ic = (0(t: 0)| Algp(2: 60)) 1.
(44)

The last expression is the expectation value calculated with the semiclassical model with
initial phasef,. We conclude thus that the Floquet evolution with a coherent state in the
initial condition is equivalent to the semiclassical model. We note that a somewhat related
construction, linking the evolution from cavity-dressed states directly to the semiclassical
model (i.e. without the intermediate level of Floquet states as we do here) was established
in [10].

(ii) More generally, if M : K — K is an observable that, with respect o is a
multiplication operator continuous iy, then taking foré a particular valugd, defines a
family of operatorsM (6p) : H — H, parametrized byy. Then

27 (¢ ® 81/2(0 — 00)|Uf (DM U (1)l ® 81/2(0 — 60)) xc = {@(t: 60)| M (B + wt)|@(1: 60))
(45)

It was noted in [8,27] that in the semiclassical model, if the initial ph&sés not
known, one can take a statistical average over the initial phases, with uniform distribution:

- 2" ddo

Asc= 7(¢(t; 00)|Al@(t; 60)) 1 (46)
0 T

From the discussion above, this coincides with the evolution in the Floquet picture of an

initial condition of the photon field that is a photon-number eigenstéte(with arbitrary

k). We have seen on the other hand that the semiclassical evolution with an initial phase

0o corresponds, in the Floquet picture, to a coherent-state initial condition.



7202 S Gérin et al
3. Emission and absorption of photons in Floquet theory

In Floquet theory the exchange of photons can be analysed from the temporal variation of
the relative photon number. In experiments, one measures for instance the difference in
intensity of the laser pulse before and after the interaction with the molecules. We describe
this quantity by

. d
§(N)(@) = <<p ®¢&|ULD) (_'39> Uk(®)| ¢ ® §> <<p ®¢ ‘—I v E> (47)
and we show below that
o do
S(N)(1) = / flé(9)|2[<le(0)lw>H —(p; ) H O + wt)|p(t; 0))2]. (48)
0 Thw
In particular, if the photon field is initially in a coherent stabg, (6) = (271)1/261/2(0 —69),
then
H (6 H(+ w
B(N)es() = <¢ ‘ ,7( 0 </>> < (t: 6o) % G 90)> (49)
a) H w H
and, if it is initially in a photon-number eigensta?),
Z dg
§(N)(@) = / 27—[((P|H(9)|(P)H — (p(t; ) H (O + wt)|@(t; 0))1]. (50)
0 Thw

We remark tha(N)(¢) is independent of the particularwe take, in accordance with the
interpretation as the relative photon number.

We can obtain these relations as follows. Using the definition of the quasi-energy
operator (7), we can expre&&V)(¢) in terms of quantities that do not involve the derivative
—i9/00:

. K
B(N)(1) = < Uk (0= Ux (1)

<p®€>
(9)

K

Ul OR

Uk (@)

3

Using the fact thatk, Ux] = 0, U,EUK = 1 and equation (7), we can write

() ®§> < ()
K

UL (t,0)HO)Uk (1,0) = U (1,0, 0)T,H(©O)T_,U (1,0, 6)
=U'(1,0,0)HO + wt)U (1, 0; 6) (53)

w®€> <<p®$‘—| <p®€> . (51)

Uk OR

SINY(E) = < 9 & Uk ()

0 ® s> (52)

K
and since

we obtain equation (48).

We can also obtain more precise information on the probak#liti, ¢) that L photons
are exchanged. If at time= 0 the photon field is in a photon-number eigenstéfé and
vt = 0) = Yo = ¢ ® € then the probability that a measurement performed at time
yields thatL photons have been exchanged, is given by

P(L, 1) = (Ug (t)ol[13 @ L) (L0 Uk (1) o) ic
=Y llon ® €D 1U (1) (9 ® €)) x| (54)

where{g,} is an arbitrary basis oft.
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3.1. Invariance with respect to the choice of the origin of the relative photon number

Due to the relative character of the number operatdt/a6, all the physical predictions
of the Floguet model must be invariant with respect to a global translation of the relative
photon numbers. We show that this is indeed the case for the properties discussed in the
previous section.

The probability P(L, 1) is independent of the particular initial photon-number state
chosen, i.e. it is independent kfsince:

Uk (1) (@ @) =U(r,0;0 — wi)(p @ 0D (55)
and thus
P(L,1) =) pn @ €"|Ux (1) (p ® 1))kl (56)

For the average number of exchanged photxaé)(¢) it is straightforward to verify that
one obtains the same result for the choice of any initial condition of the photon field of the
form

%. — chei(k+m)0 (57)
k

with arbitrary translationn.

3.2. Algorithmic aspects

From the relation (4), it follows that the information contained in the Floquet evolution
can be obtained from the numerical simulation of the semiclassical model, and vice
versa. Indeed, performing one simulation of the Floquet evolutioki itontains the same
information as a family of simulations of the semiclassical modéiifor different values

of the initial phase?. (A finite numberN of semiclassical simulations corresponds to one
Floquet simulation withV grid points in the discretization af.) A single semiclassical
simulation yields the Floquet evolution corresponding to a photon coherent state in the
initial condition. Extended Hilbert-space techniques of this type have been applied to the
numerical solution of the Scbdinger equation in [33].

4. Structure of the Floquet states; relation with RWA dressed states

The widely used RWA (see e.g. [34, 1]) allows us to obtain an approximation of the solution
of the time-dependent Sdbdinger equation analytically for a two-level system driven
periodically (extensions tav-level systems have been developed, under some particular
conditions on the spacings [35] of the levels). In this section we willkset 1. For a

Hamiltonian of the form
wo

H@® + wt) = 50 + Qsin(6 + wt)o, (58)
with the Pauli matriceso,, 0y, 0., the RWA consists in substituting the interaction
Qsin® + wt)o, by

Q 0 efi(0+a)t)
5 | g+on 0 .

This comes down to keeping the term oscillating witland neglecting the term oscillating
with —w, which produces a counter-rotating correction to the RWA. The RWA is only
justified when the driving frequency is resonant or weakly detuned {.e>~ wp).
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Furthermore, the RWA gives a good approximation only if the coupling (i.e. the Rabi
frequency2) is small compared with the Bohr frequenay. In this sense, the RWA

is a near-resonance, weak-field approximation [1]. Otherwise, nonlinear effects, like the
dynamical Stark effect, destroy the near-resonance property. Once this approximation is
made, the time evolution can be solved explicitly. The idea is to find a unitary time-
dependent transformation (with the same period as the perturbation field) which leads to
an equation with a time-independent Hamiltonian. The point that we want to stress in this
section is that, within the approximations considered above, dressed states of the RWA
Hamiltonian are just approximations of the Floquet states [36, 1]. Floquet states are indeed
well defined for the complete Hamiltonian (58), and they play the same role as the RWA
dressed states, but without the need of approximation. As it was shown by Salzman [15]
finding a unitary operator that transforms the Sctinger equation with a time-dependent
Hamiltonian into one with a time-independent Hamiltonian is equivalent with the spectral
problem of the Floquet Hamiltonian. In this sense, the Floquet theory can be thought of as
a generalization of the RWA, but without using any approximation.

This connection can be seen from the following alternative interpretation of the quasi-
energy eigenvalue problem [15], which gives information about the general structure of the
spectral elements of the quasi-energy operafor We look for a unitary transformation
C(x,0): H — H (0 is treated here as a parameter) to get a time-independeriidioger
equation, i.e. such that

UB(t,10;0) = CO1) U1, t0; 6)C (O(t0)) (59)

satisfies
.0
|5U3(z, 0;0) = BU%(1,0,0) (60)

where B(x) is a time- andd-independent operator acting d. We remark that there
always exists a unitary time-dependent transformation that leads to an equation with a time-
independent Hamiltonian. But here we require specifically that the unitary transformation
C depends on time only through the varialslg), i.e. that it is periodic with the same
frequency as the perturbation.

With such a transformation we have

Ul(t, 10, 0) = C(O(1)e" B0 C(0(tp)) ~* (61)
with
10C(0(1)) dO(1)
20 (1) dr

Acting with 7_, from the left on equation (61), and witfj, from the right, we show that
the unitary transformC induces a unitary transform of the quasi-energy operator in the
enlarged spack

e—iK(G)(T—to) — C (G)Tite—iB(t—fo) Zoc(e)—l' (63)

B =CO®) T HEO®))CO@) —iCOE)” (62)

Thus, finding the spectral elements of’€®" in I comes down to determining eigenvalues
and eigenfunctions of the time-independent operd@dn H (denoted respectively by?
andW?, m e N) and those of the Koopman operaffr, in Lp(St, d9/27), e and &7,
k € Z, and then apply the transform (63).

From this we can deduce the general structure of the Floquet states

W, 1 (x,0) = C(x, D[N @ W (x)] (64)
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and of the quasi-energy spectrum

Ak = 2B +ko. (65)
For the RWA Hamiltonian, the transformation is
1 0
cor=(5 &) (66)

which leads to the constant operator () (wg — w)o,/2+ Qo /2+ w1 /2, which yields
the RWA dressed states.

5. Adiabatic Floquet theory for the chirped laser field and labelling of the dressed
states

The shape of the pulse and a swept frequency can be modelled by adding into the periodic
Hamiltonian a slow time dependence compared with the period. This can be treated
by adiabatic techniques and Landau—Zener-type formulae to study transitions between
levels. Breueret al [38] have treated the case of a slow time-dependent amplitude. Its
study involves quasi-energy diagrams representing the quasi-energies as a function of the
amplitude. This has been applied successfully to control population transfer to enhance
tunnelling time [39, 40], as well as to interpret a large variety of experiments [41-46]. The
adiabatic Floquet theory for a more general slow time dependence, including a frequency
modulation in addition to the amplitude modulation, has been developed in [4]. The theory
establishes the determining role of an effective frequency driving the dynamics of the system,
and which is the relevant parameter as a function of which one has to study quasi-energy
diagrams. Here we will discuss the use of the relative photon number opatatmrssign
physical labels to the states in quasi-energy diagrams.

We consider a Hamiltoniar @10 + w(r)r) where r(r) represents a set of time-
dependent parameters, not including the swept frequericy. The solution of the time-
dependent Scbdinger equation is related to the propagator associated to an instantaneous
guasi-energy operator which is defined through an effective frequency.

The operatorU is the propagator of the Scbdinger equation

9 )

i U 10;0) = HI Ol + w0 U1, 10 0) (67)
if and only if the operatoilUx, defined by

Uk(t,10,0) =T, U1, 10: 0) T, (68)
satisfies

9 .

|hEUK (1, 19, 0) = KU OOl 0y (2, 10, 6) (69)

wherewer(t) = w(r) + o(1)t, 7; is the translation operator which acts dip(S?, d9/27) as
T,£(0) = £(0 + w(1)r) and

— d
K@) 0en®] ) = Hlrol ) — Iha)eﬁ(t)%. (70)

This result is proved as follows. We start with equation (69) which, by differentiation of
(68) and the fact that for any € £

d d a9 __ 9
E(T—té(@) = ES(G —o(r) = ‘57—%5(9)

0 0
=—(o+ td))T—t@E(G) = —weﬁT_t@E(G) (71)
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is equivalent to

_ 9 9
—mweﬁT_,@U o+ mT_%UT,O = Kol . UT . (72)
or also to,
3 -9 [rer]
_lha)eﬁiU + |hTflfU - ZK I et TftU
90 ot
3
— _mweﬁﬁu + 7, HT ,Uu (73)

which is identical to the Schdinger equation:
)
i Ut 10:0) = HIOY o) U, 10; 0). (74)

The appearance of agffectiveinstantaneous frequency in the quasi-energy operator
distinguishes our formulation from earlier attempts to treat adiabatic frequency modulation
[38]. Extending the usual adiabatic theorem to the instantaneous Floquet states, one can
formulate under suitable conditions the following adiabatic principle.

If at timet, the system is an instantaneous Floquet state, then in the adiabatic limit the time
evolutiong (¢) stays for allz in the connected instantaneous Floquet eigenstate:

¢ (1) = e oYl O-0a®l (g 1 (1)r) (75)

where the phasé,, € R is the superposition of the dynamical phase and Berry’s geometric
phase [47].

This formulation leads to the analysis of the quasi-energy opeféltott! (70), which
is evaluated at each (fixed) value of the parameteaind weg.

The limitation of the adiabatic behaviour occurs around avoided crossings between the
guasi-energy levels, which produce transitions between these levels. This can be calculated
with Landau—Zener formula in an adiabatic regime, in the sense that the subspace generated
by the quasi-energies involved in the avoided crossings has an adiabatic evolution with
respect to the other states.

We can calculate the average 8f = —id/00 in a Floquet statal, by differentiating:
W 9 (WK [Wy)
Ba)eﬁ = 8a)eff n nlkK
— 0 v, v,
=(v, |—ih—|W¥,) + K|\v,) +(w,|K
using the fact thatt () does not depend ome;. From the relation(W,|W,) = 1, we
deduce
ow v, a
< |k w> +<wn K‘ > =An( <wn|wn>> ~0 (76)
dweff K Oweff [ Owert
which finally gives the identity
1 9x,
(WnNe| W) = = . (77)
h aweff

This gives the general behaviour of the quasi-energy diagram as a function of the effective
frequency:the quasi-energy diagram as a function of the effective frequency is essentially
composed of straight lines, except where the quasi-energies form avoided crossings at which
there are transitions between the levels
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This can be seen, for example, on a quasi-energy diagram for a three-level ladder system
[2]. We justify this property using the physical interpretation of the relative photon number
operator applied to the relation (77): far from any avoided crossing, no transition occurs,
i.e. there is no variation of the average relative photon number in a given Floquet state:
M, /dwes IS CcONstant, i.ed, (weg) IS a straight line. This implies the exchange of slope of
the two quasi-energies around an avoided crossing. Instead of labelling the quasi-energies
by continuity as it is usually done (e.g. to apply the Landau—Zener formula), we can label
them with respect to their slope, which reflects the effective transition that takes place
between the quasi-energies at the avoided crossings.
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Appendix A. Proof of the convergence from cavity to Floquet dynamics

In this appendix, we will show that in the limit when the mean number of photons tends
to infinity, while keeping their density constant, the dressed energy operator is equal to the
Floguet Hamiltonian. To keep the argument simple, we will treat only the BaseCV.
As it can readily be seen from the proofs, all the statements below remain validuifd
H, are merely bounded symmetric operators on a Hilbert spce

To simplify the notation, we will leh = 1 and use the following:

. E : .0 0
Vi=—i— e""\/ﬁ—|——\/ﬁ—|—e"’ P;
Ji 96 90

V = —2Esing

0
K0=—]J®|w%+Ho®]l (A1)

; 9
H; :=HEKA)—wn:—]l@lwﬁP,,-+Ho®Pﬁ+,u®V,—l=:KOP,,-—i—W,;

.0
K:—]l@la)£+H0®:u+/L®V=:K0+W

where we have denoted bf; = > . |€%?) (€*?| the eigenprojection of-id/36 on the
eigenspace of Fourier modes—n. Our aim is to prove the following result, which shows
that the evolutions associated ko and H; are equal in the limiz — oco.

Theorem AlLet Ho and . be symmetric matrices (or bounded self adjoint operators) on
H. Then, €' converges strongly to&X for all t € R, asin —> o0, i.e.

ety s g7itKy, for all v € K =H ® Lo(S, d9/2r). (A2)

Note that this is the best one can hope for the kind of problems we are concerned with,
as the convergence cannot be uniform.

The idea of the proof is rather straightfoward and simple. We will show that it is
sufficient to verify thatH;y converges tak ¢ for all vectorsys of the formg ® €/ with
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¢ € H, to insure that the corresponding evolutions are identical in the limit. This is a
simple consequence of the fact that, provided —k:

Hip @ € = Kop ® €Y — i E(ug) ® (,/1+ ge“e —J1+ kj_l_lé”) ko (A3)

However, to prove theorem Al, we have to deal with unbounded operators for
which one always needs to be cautious, as it is necessary to deal with problems related
to the domain of the operator and notions of generalized convergence. The questions
associated to convergence can be discussed by considering a set of bounded functions of
the unbounded self adjoint operators involved in the limit procedure. Natural families of
such bounded functions are given by ‘propagatdis(x) = €*;r € R} and ‘resolvents’

{r:(x) = (x —2)7% Imz # 0}

In the proof, we will need several classical results in operator theory that can be found
in the series of Reed and Simon [48] or in the book of Kato [49]. For the convenience of
the reader we will, however, state those results when needed.

First, recall that donf’, the domain of an (unbounded) operatdr, is the set where
it has been defined. By definition; € domT implies that||Tv | < co. An operatorS
is said to be arextensionof an operatortT, if dom7 c domS and Sy = T+ for each
¥ € domT. This will be denoted byi" C S.

The notion of general convergence we will use is the following. A sequence of self
adjoint operatorqT,} is said toconverge strongly in the resolvent sertsea self adjoint
operatorT, if for any z with 3mz # 0, the sequencél;, — z) "1y converges ta7T —z) 1y
for all vectorsy. The most natural convergence for our problem would have been to
directly consider the propagators. But, the chosen one allows us to rely on the results found
in [48]. In fact, these two kinds of convergence are equivalent, as shown by the following
result due to Trotter [48, theorem VIII.21, p 287].

Theorem A2 (Trotter)Let {7,} and T be self adjoint operators. Theh, — T in the
strong resolvent sense if and only If’e converges strongly to'é for each:.

In order to prove the convergence Hf to K in the strong resolvent sense, we need
to introduce the notion of essential self adjointedness. First, recall that an op&régor
said to beclosed if it satisfies the following property: ify,} ¢ domT converge toy and
if Ty, —> ¢, then this implies thaty € domT andg = T. An operatorT is called
closable if it admits a closed extension. Thodosure of a closable operator is the smallest
closed extention of this operator (which exists by hypothesis).

If 7 has a dense domain, we can defineaitifoint 71 by

(T'yle) = (¥|Tg)  forally e domT (A4)

and its domain dorf'f is the set of vectorsy such that there exists a constaiit= Cy
with [(|Te)| < C|lell, for all ¢ € domT. It can be proven thaf't is always closed (see
[48, theorem VIII.1, p 252]).

A symmetricoperatorT is an operator satisfyin c 7, and hence it is closable. An
operator is calledself adjoint if it is equal to its adjoint. This implies in particular that
their domains are equal. A symmetric operatoessentially self adjointif its closure is
self adjoint. In general, it is very difficult to prove that a symmetric operator is self adjoint,
as the domain of a self adjoint operator is not easy to find. So one deals with symmetric
operators and tries to prove that they are essentially self adjoint.

The basic criterion for essential self adjointness is the corollary following theorem VI111.3
in [48, p 257].
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Proposition A3.Let T be a symmetric operator. Then the following are equivalent:
() T is essentially self adjoint;
(b) kernelT" £ i) = {0};
(c) rang€T +i) are dense.

As a useful illustration of this result, we will prove the following.

Lemma A4 A symmetric operatofl having a total set of eigenvectors is essentially self
adjoint on the set of all finite linear combinations of its eigenvectors.

Indeed, by symmetry all the eigenvaluesof T are real, hence the setl’ £ i)g, =
(A, £, # 0 is total, which implies that the finite linear combinations are dense in the
Hilbert space.

The next result is a reformulation of [48, theorem VII1.25, p 292], which shows that it
is sufficient to prove that a sequence of self adjoint operators converges strongly to a self
adjoint operatofT on a setD on which there are all essentially self adjgint

Theorem A5Let {7,} and T be essentially self adjoint on a common domdn If
T,¢o —> T for eachy € D, thenT, — T in the strong resolvent sense.

In order to use this result, we need to show thgtand K are essentially self adjoint
on a common domain. This domain will be the set of finite linear combinations of simple
tensors of the fornp ® €*¢:

D:{Zmp@ék@;goeﬂ}. (A5)
finite

We first have to deal with the tensorial form of the operators involved. We can use the
corollary following theorem VII1.33 in [48, p 301].

Proposition A6.Let 71, ..., Ty be self adjoint operators oH3, ..., Hy and suppose that
for eachk, D, is a domain of essential self adjointness . Then, the operators
NHe..TyadNMelr...l1+...+1® ... 1® T, are essentially self adjoint on
D = ®)_, Dy, the set of finite linear combinations of simple tensors.

This proposition shows thatly ® P;, Ho® 1 and —1 ® iwd/36 are essentially self
adjoint onD and hence they are in particular symmetric.

Next, to prove thatd; and K are indeed essentially self adjoint &n we will need the
following result that can be found in [49, chapter V.4, theorem 4.6, p 289].

Theorem A7Let T be essentially self adjoint and ldt be symmetric. IfA satisfies
lAY 12 < a®lly |2+ 21Ty 1> forall y € domT (A8)

with b < 1, thenT + A is essentially self adjoint on doim
Operators satisfying (A6) are saittbounded, with relative’-bounds < 1.

Ho® P;, Ho® 1 andW = —2E 1 ® sind being a bounded operator, they satisfy (A6)
with b = 0 with respect to any essentially self adjoint operator. This proves kh
essentially self adjoint o®. It remains to see that

E , 3 3 .
W; = Vi=—-in® — e'e\/'—i—\/'—ie'e P; A7
U M®ﬁ< =i n—ig (A7)

1 For the reformulation, see the definition otare in [48, chapter VIII.2, p 256].
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is —1 ® iwd/d6 P;-bounded with relatively bounel 1 on the setD, as we can then add
the bounded operataily ® P; without changing this quality. First, note that

v, &k = - ( ke — itk 1é0) P:é"  for anyk. (A8)
n

Using the fact thaW; = u® V; can be written asu®1)(A® V;) and t_hat the multiplication
by €' is an unitary operator oft, we have for any vecto}_ ¢, ® €/ in D thatf,

2
H W; Z o ® eik9

2
Y o ® Vi +k+ 16" et

—i0 PﬁeikG

n+k

E? 2 :
< Zﬁllull"’(H Y @i +kPet?| + H > o ® Vit + k + 1P

)
(A9)

The vectors{g; ® €4}, being mutually orthogonal if'C, we can use Pythagoras’ theorem
to obtain, denoting: = 2E?| %,

H Wi o e
2

1
<De (2+ + >||<ok®é’<9||+ o ® Pz’ |2

<2+ + )HZ%@W (Jl@lw )Zwk@)e'ke

(A10)

2
1 . c :
< e <2+ ) low ® Pie 112 + 2= [Klllgx @ Pre"”|?

1
+

where we have used that|2|/i < c?/w? + k’w?/i?. Theorem A6 allows us to conclude
that H; is essentially self adjoint o®. This completes the proof of theorem Al, as we
have already shown thdi;¢ ® € — K¢ ® €’ for all ¢ € H andk € Z and as this
convergence can be extended to the whol®dfy linearity.

Appendix B. The n — oo limit of coherent states

In this appendix we prove that coherent states

la) = @ (0) = e /22 o é<" MO=00) (B11)

with o = |o|e %, are represented in Floquet theory, i.e. in the limit= vz — oo, by a
generalized functiorbg, (0), which is real, depends ah— 6,, and

(g, (0))2 = 278(0 — ). (B12)

We prove this by showing that for any sufficiently smooth functigid) € £ =
Lo(St, dg/2m),

Jim a1 f@)l)c = £ @) (B13)

1 Note that any vector ifD can be written as such a sum.
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and noting that fo® = 6, the coherent state (B11) is real. It is enough to prove that for
anyk € Z

lim («|€"|a), = ek, (B14)

|| =00

We can write

o n+n' 2
j 2 o ; , de . ,
(Ol|elk9|0l)£ = e*|a| Lefl(nfn )bo / el(n+k7n )0
0

nmo Vnln'! 2n

. 0 |a|2n+\k|
— ék(’Oe*lalz Z
=5 /nt(n + k]!

where we have first exchanged the integral and the sum (since the sum is absolutely
convergent), and then used

(B15)

2 do , )
/ —expi(n+k—n")0) =8 p—n.
0 27T
The result follows thus from the

Lemma B1For k > 0, the function

G =e?y. Jnf(:_fk)' (B16)
= /n! !
satisfies
lim G(z) = 1. (B17)

Z—>00

Proof. This result can be obtained by generalizing an argument used in [29]. We first
remark thaty/n'(n +k)! = nl/(n+k)(n+k—1)...(n +1) and use for each of the
factors the identity

1 1o
= f dr e ) (B18)
(n+j)»t T+ Jo

(which is just the definition of th&-function) fors = —1/2. UsingI'(1/2) = = %/2 we can
thus write

9] %) k k
((n+k)...(n+1))‘1/2=n"‘/2/ dtl.../ dtkl_[zj_l/zexp(—Z(nJrj)zj)
0 0 j=1 j=1

(B19)

and therefore
0 o0 k K
G(z) = n—k/zzk/ze—f»/ dry .. / dr, 1_[ tj_l/z eXp( - Z jt;)
0 0 j=1 j=1
00 Zn k n
(el )

n=0 j=1

The last sum is equal to egpexp(— ijzl ).
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Making the change of variables exgr;) = 1 — x;/z, we obtain

z z k
G(2) :n—k/ZZk/Ze—z/ dxlf dka_k eXp(z H(l—Xj/Z)>
0 0 j=1
k 1 —1/2
. /7)1
xl_ll:lnl_xj/z] - x/2)

j=1
o] 00 K
— n—k/Z/ dxl-.-/ dxx exp(— z(l— l_[(l_xj/Z)>>
0 0 j=1
k

x [ [ xoapz=2 [ln

~1/2

j=1
oo (o]
:ﬂik/Z/ dxlf dxkfz(xl,...,xk) (821)
0 0
where xjo.,1(x) represents the characteristic function of the intervak]0 O

To prove lemma B1, we will use the theorem of dominated convergence of Lebesgue
[50], a simplified version of which can be stated as follows.

Theorem B2Let {f,} be a sequence of absolutely integrable functions over a stbsét
R* which converge pointwise for almost all points to a functjpnSuppose that there exists
a positive and integrable functignsuch that f (x)| < g(x) for almost everyx. Then f is
integrable and

lim / | fo — fldx =0 and Iim/ fu dkx:/ fdx. (B22)
n— o0 X X X

n—00

Note that instead of the limit — oo in (B17), we can consider this limit on any
sequence tending t¢oof.

Assuming that we have found a suitable functianm,, . . ., x;) that bounds the integrand
fo(x1, ..., x;) of G(z), the argument proceeds simply as follows. First, note that we have

k k
lim exp(—z<1—]"[(1—x,-/z)>> = exp(—Zx,»). (B23)
—>00 j:l j:l

This can easily be seen by developing the product in the argument of the exponential. Next,
for eachj > 1, we have that

1 -1/2 '
lim 7712 [ln } (1—x/2)/ t=x "2 (B24)
7—>00 1— X; /Z J
To obtain this result, we can take the square of this function and then use de I'Hospital’s

rule. Finally the limit of the characteristic function is simply the constant 1. Hence we
have shown that

im foGen o) =[x Y2 exp—x)) on (0; 0o). (B25)
Z—>00
j=1
Therefore, by theorem B2, we have

k )
lim G(z) =[] / dx; x; 2 exp(—x)) = 721 (1/2)f = 1. (B26)
=00 j—l 0

1 In fact, as it can readily be seen, the arguments below are actually independent of the choosen sequence.
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To conclude the proof, it remains to show the existence of the bounding functidre
will bound each factor inf, separately. First, notice that is a positive function. Next,
we have

(1= x;/2) 7 xpo. () < 1. (B27)
Using the inequalityy < —In(1 — y) which is valid in 0< y < 1, we find that
1 iz 172
-1/2 = .
z [In 1—xj/z] < X; for 0 < x; < z. (B28)

Finally, we have in the interval & x; < z,

exp(—z(l—jlj(l—x,/z))) gexp(—iixj>. (B29)

j=1
Indeed, taking the logarithm and denoting= x;/z, we see that this inequality is equivalent
to

k k
1
1—||1— -275 i forO<y <1 B30
jzl( yi) k o Yj Yj ( )

This inequality follows directly from the fact that (identifying-1y; with s;)
k

k P&k
Hsjg(l_[s,> SEZSJ fOngS,gl (831)
j=1 =1

j=1
The first inequality is true because eaghbelongs to the interval [Ql], and the second

follows from the fact that a geometric mean is always less than or equal to an arithmetic
meart. Thus, we have shown that

k

1 <
0< fz()C]_, co X)) < exp( — % Zx]) l_[xj 1/2 = g(x;]_, e, XE). (B32)
j=1

j=1
Now, the bounding functiorg is integrable, since

o0 oo o0 k
f dxl.../ g g(x1, ..., x3) = (/ xl/zex/kdx> = (wk)"? < 0 (B33)
0 0 0

which completes the proof.

Appendix C. The formal calculus of §1/2(8 — o)

Since the origin of théy,, function is
| @y, ()]~ (8m)Y*in™/* exp{—2a[1 — cos(6 — 6)])

20" oo

1/2( —i1(60—60)

ﬁ:-}oo(zn) i/ ©

— (271)Y281/5(6 — 6o) (C34)
n—oo

we can establish the following formal calculus rules:
)
(81/2(0 — 60)* = 5(6 — 6o). (C35)

1 This can easily be shown by using the concavity of the functigm)ln
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(2) If 0 # 69

81/2(6 — 6p) = 0. (C36)
(3) For any¢ € L

81/2(0 — 60)§(0) = 61/2(6 — 60)§ (6o). (C37)
4)

21 (81/2(8 — 60)161/2(6 — 6p))c = L. (C38)
(5) For any¢ € L

(81/2(60 — 60)|§())c = 0. (C39)
(6) For any observabl# : £ — L that is a continuous function @f,

27 (81/2(0 — 60) | F(8)181/2(0 — 60))c = F (6o)- (C40)

(7) By equation (39), we obtain

i a
90
(8) If ¢ e HandM : K — K is an observable that with respectéas a multiplication

operator, continuous iy, then taking fo® a particular valu®, defines a family of operators
M (6p) : H — H, parametrized by,. Then

27 (¢ ® 81/2(6 — 00) [ M (0) g ® 81/2(6 — O0))c = (@I M (Bo)¢) . (C42)

We remark tha®,,,(6 — 6p) can be interpreted as a linear functional on the space of
continuous observables = F': £ — £ by

81/2,0, - F > (81/2(0 — 00) | F(0)81/2(0 — 60)) - (C43)

<51/2(9 %))

81/2(6 — 90)> - 0. (C41)
L
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