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Abstract. We show that Floquet states can be constructed as strong-field limits of cavity-
dressed states. The interaction between laser beams propagating outside the cavity with atoms
or molecules are described by Floquet states, constructed from dressed states of average photon
number n̄ quantized in a cavity of volumeV , by taking the limitV → ∞, n̄ → ∞, while
keeping the photon densityρ = n̄/V constant. Thus, Floquet theory can be seen as a fully
quantum-mechanical model in the sense that it describes the photon exchanges between matter
and radiation containing a large amount of photons. We discuss in this context adiabatic Floquet
theory to treat a slow time dependence of the laser amplitude, to describe pulses, and of its
frequency (chirping).

1. Introduction

The control of dynamical processes by intense laser fields is extensively studied in atomic
and molecular physics. Efficient tools to treat these phenomena are based on the notion of
dressed states, characterizing the stationary states of the molecule dressed by a classical or
a quantized radiation field. A method often used to construct dressed states starts with a
semiclassical model (i.e. a quantized atom perturbed by a time-dependent classical field),
and then invoking the rotating-wave approximation (RWA). This approximation is valid
only in the study of a few levels perturbed by a weak and near-resonant field [1]. The
new laser sources provide very intense pulsed fields, with the possibility of time-swept
frequencies [2–4], for which the RWA is not well adapted, since the resonance conditions
for different levels cannot be simultaneously met. In this paper, we present the theory of
Floquet states in a formulation that allows us to make a clear connection with the theory of
cavity-dressed states [5–7]. We present a construction of Floquet states as large intensity
and infinite volume limits of cavity-dressed states. The infinite volume limit is needed in
order to take into account the fact that the laser pulse propagates in free space, as opposed
to a cavity. Floquet theory gives a precise framework to describe the exchange of a single
or a few photons between an intense laser and an atom or molecule. Floquet states can be
considered as an intermediate description between quantized cavity-dressed states (which
are well adapted to treat intracavity processes) and the semiclassical model. They retain the
feature of cavity-dressed states of being able to describe single-photon exchanges, since the
considered mode of the radiation field is fully quantized. With the semiclassical model they
share the possibility of describing pulses by a (slow) modulation of the coupling amplitude,
and to include effects like time-swept frequencies (‘chirping’). These phenomena cannot be
easily incorporated into cavity-dressed state models, since the intensity of the field is not
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determined by the coupling constant in the Hamiltonian, but by the initial condition of the
quantized radiation field. In the Floquet approach the intensity of the field is completely
determined in the Hamiltonian.

Furthermore, we show that the semiclassical model can be recovered from the Floquet
approach as a particular form of an interaction representation, together with the choice of
coherent states as initial conditions. This construction is related to the analysis of [8–12].
Since the model contains only one (or a few) strongly populated photon modes, it cannot
describe spontaneous emission. Its predictions are thus only valid for times that are short
compared with the life-times of the relevant molecular or atomic levels.

We also summarize the close connection between the Floquet formalism and the widely
used treatment of light-matter interaction with the RWA approach. The essential point of
the RWA approach is that the coupling term in the semiclassical Hamiltonian, e.g. for a two-
level system coupled with a periodic time-dependent field, is substituted by an approximation
which allows us to obtain explicit solutions of the time evolution. These are obtained by first
transforming the Schrödinger equation with a time-dependent Hamiltonian into one with a
time-independent Hamiltonian. This transformation is unitary, time dependent, and has the
same period as the perturbing field. The time-independent Hamiltonian obtained in this way
is interpreted in the literature [1] as an effective Hamiltonian containing the information
on the atom ‘dressed’ by the radiation field. This general idea is precisely realized in
Floquet theory, and without the need to invoke any approximation (like near resonance
or small intensity) [13, 14]. It has been shown in [15, 16] that the Floquet formalism
can be alternatively interpreted as a procedure to find a unitary operator that yields an
evolution equation with a time-independent Hamiltonian. This unitary transformation can
be explicitly expressed in terms of the eigenfunctions of the quasi-energy operator (or
Floquet Hamiltonian). Furthermore, the connection with the concepts of cavity-dressed
states mentioned above gives a complete picture of dressed states for an atom or molecule
interacting in free space with a laser. The shape of the laser pulse and a chirped frequency
can be naturally treated by applying adiabatic principles to the Floquet states. The quasi-
energies can be represented as a function of the slow time-dependent parameters in quasi-
energy diagrams. Quasi-energy diagrams for frequency modulation consist essentially of
straight lines, except near avoided crossings where transitions between the dressed states
occur [17, 4]. In section 5, we discuss the relation between the slopes of the lines and the
relative photon numbers, which provide a useful technique to attribute physical labels to
the states.

In appendices A and B we provide mathematical proofs of the main results.

2. Construction of Floquet states from dressed states in a cavity

In a cavity, the dressed states represent the stationary states of an atom or molecule
interacting with discrete modes of the quantized electromagnetic radiation [7]. The cavity
allows a natural quantization of the radiation, in which, to each mode of frequencyω, there
is a corresponding harmonic oscillator of that frequency. Our goal is to study the exchanges
of photons between the molecule and the laser field outside the cavity.

2.1. The Floquet theory

The Floquet formalism can be constructed from two different points of view: one approach
starts with a semiclassical model and the other one from a completely quantized model in
a cavity. We first present the construction of the Floquet formalism from the semiclassical
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model, and then we establish the relation with the cavity-dressed states. Our formulation
allows a direct connection to the phase representation of photon fields.

Our first starting point is a semiclassical model, in which the laser field is described by
a classical time-dependent periodic electric fieldF . The time dependence of the periodic
Hamiltonian is introduced through the time evolution of the initial phaseθ(t) = θ + ωt
[18, 8, 19, 20]:

H = H(x, θ(t)) = H0− µ(x)F (θ + ωt) (1)

whereµ(x) represents the dipole moment of the molecule. The semiclassical Schrödinger
equation

ih̄
∂

∂t
ϕ = H(x, θ(t))ϕ ϕ ∈ H (2)

is defined on a Hilbert spaceH, which can be of infinite or finite dimension (e.g. inN -level
modelsH = CN ). The initial phaseθ appears as a parameter. One can think of (2) as
a family of equations parametrized by the angleθ . We denote the corresponding family
of propagators byU(t, t0; θ). The quasi-energy operatorK, or Floquet Hamiltonian, is
constructed as follows. We define an enlarged Hilbert space

K := H⊗ L (3)

whereL := L2(S1, dθ/2π) denotes the space of square integrable functions on the circle
S1 of length 2π . We first lift the family of operatorsU(t, t0; θ) (defined onH) into the
operator acting on the enlarged spaceK, by treating the dependence onθ as a multiplication
operator. This operator is unitary inK.

The Floquet HamiltonianK is then defined as the infinitesimal generator of the following
one-parameter (t − t0) family of unitary operators

T−t U(t, t0; θ)Tt0 =: e−iK(θ)(t−t0)/h̄ ≡ UK(t − t0, θ) (4)

where the translation operatorTt acts onξ ∈ L2(S1, dθ/2π), by

Tt ξ(θ) = ξ(θ(t)) (5)

and can be expressed as

Tt = eωt∂/∂θ . (6)

We remark that the time evolution of the phaseθ(t) = θ + ωt can be seen as a classical
flow on the circleS1 andTt is the corresponding Koopman operator [21].

From this definition, the quasi-energy operator, or Floquet Hamiltonian,K, acting on
the enlarged spaceK can be written as

K(θ) = H(θ)− ih̄ω
∂

∂θ
. (7)

This formulation leads to the well-established properties of the Floquet states and the quasi-
energies (eigenfunctions and eigenvalues ofK): stationary states, eigenfunction expansions,
etc. We also point out the easy generalization of this formulation to the quasi-periodic case
(i.e. the case with several incommensurable frequenciesω = (ω1, . . . , ωd), in which case
K = H(θ)− ih̄ω · ∂/∂θ , with θ = (θ1, . . . , θd) [22–25].

In a second approach we will establish a precise relation between dressed states in a
cavity and the Floquet formalism. We show that the Floquet HamiltonianK can be obtained
exactly from the dressed Hamiltonian in a cavity, in the limit of infinite cavity volume and
intense laser field. This gives a precise formulation of the statement suggested in [8]:K

representsthe dressed Hamiltonian of the molecule interacting in free space with a field
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containing a large number of photons. Moreover, we establish the physical interpretation
of the operator

Nr = −i
∂

∂θ
(8)

in the limit of a large number of photons as therelative photon number operator. It
characterizes the relative photon number of the field with respect to the averagen̄. The
variation of the average ofNr in the Floquet formalism gives the number of photons gained
or lost (depending on the sign) by the field.

2.2. Dressed states in intense laser fields

We consider a molecule with HamiltonianH0 interacting with one mode of the
electromagnetic radiation polarized in theε direction, where we assume an electric dipole
coupling with momentµ denotingµ = µ · ε [7, 26],

HLM = H0(x)⊗ 1IF + 1IH ⊗ h̄ωa†a − µ(x)⊗ iE(a − a†). (9)

The degrees of freedom of the molecule are represented by the variablex andH0(x) acts
on the Hilbert spaceH. The mode of the laser with frequencyω is described by the number
operator of a harmonic oscillator, which can be expressed in terms of the annihilation and
creation operatorsa, a†. They act on the Fock spaceF generated by the stationary states
|n〉 of the harmonic oscillator.HLM acts on the enlarged space

HLM = H⊗ F . (10)

The coupling constant is given by

E =
√
h̄ω

2ε0V
(11)

whereε0 is the vacuum permitivity, andV the volume of the cavity.
We note that, with the cavity-dressed state model (9), the field intensity does not appear

explicitly. It depends on the average number of photons contained in the initial state of
the field. The connection between this model and the Floquet formulation is given by the
following property. Since the radiation is not confined in a cavity, but propagates and
interacts with the molecule in free space, we have to take the limit

V →∞ (infinite cavity volume),
n̄→∞ (large photon number average),
ρ = n̄/V = constant (constant photon density).
In this limit, the dressed Hamiltonian is identical to the quasi-energy operatorK

HLM − h̄ωn̄ −→ −ih̄ω
∂

∂θ
+H0− µE sinθ ≡ K (12)

where

E =
√

2ρh̄ω

ε0
. (13)

To show this relation, we use the phase representation ofHLM , as formulated by Bialynicki–
Birula [27–30]. We construct an isomorphism between the Fock space and the spaceLn̄,θ
defined as a subspace ofL := L2(S1, dθ/2π), the square integrable periodic functions of
the angleθ (i.e. on the circleS1), generated by the basis functions{|eikθ 〉;−n̄ 6 k < +∞}:

|n〉 ∈ F ←→ |eikθ 〉 ∈ Ln̄,θ with n̄+ k = n. (14)
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In the limit n̄→∞ we obtain the whole space

Ln̄,θ
n̄→∞−→ L2

(
S1,

dθ

2π

)
and HLM

n̄→∞−→ K := H⊗ L2

(
S1,

dθ

2π

)
. (15)

By this isomorphism, the creation, annihilation and photon-number operators (a†, a andN )
have a corresponding representation acting onLn̄,θ , which we denote respectivelya†n̄,θ , an̄,θ
andNn̄,θ :

a†|n〉 = √n+ 1|n+ 1〉 ←→ a
†
n̄,θ =

√
n̄− i

∂

∂θ
eiθPn̄ (16a)

a|n〉 = √n|n− 1〉 ←→ an̄,θ = e−iθ

√
n̄− i

∂

∂θ
Pn̄ (16b)

N |n〉 = a†a|n〉 = n|n〉 ←→ Nn̄,θ =
(
n̄− i

∂

∂θ

)
Pn̄ (16c)

wherePn̄ =
∑∞

k=−n̄ |eikθ 〉〈eikθ | is the projector onLn̄,θ . The operatorsa†n̄,θ , an̄,θ andNn̄,θ
are defined on the whole spaceL2(S1, dθ/2π). On the subspaceLn̄,θ , the isomorphism can
be verified by considering their action on the basis (14). The operator in the coupling term
becomes

an̄,θ − a†n̄,θ = Pn̄
(

e−iθ

√
n̄− i

∂

∂θ
−
√
n̄− i

∂

∂θ
eiθ

)
Pn̄ (17)

the Hamiltonian is written as

H
(n̄)
LM = H0(x)⊗ Pn̄ + 1IH ⊗ h̄ωNn̄,θ − µ(x)⊗ iE(an̄,θ − a†n̄,θ ). (18)

We remark that this is an exact correspondence, which is just a precise expression of Dirac’s
transformation formalism of quantum mechanics [31, 32].

The explicit writing of the projectorPn̄ in (16) is motivated by the fact that in this way
the operatorsH0(x)⊗ Pn̄,Nn̄,θ , an̄,θ , a†n̄,θ andH(n̄)

LM are also well defined in the total space
L = L2(S1, dθ/2π), and the discussion of the limit̄n→∞ becomes conceptually clearer.

In [27, 28] the formal hypothesis

− i
∂

∂θ
� n̄ (19)

is invoked to approximate√
n̄− i

∂

∂θ
=
√
n̄

√
1− i

n̄

∂

∂θ
=
√
n̄+O

(
1√
n̄

)
which leads to

(an̄,θ − a†n̄,θ )/
√
n̄
n̄→∞−→ (e−iθ − eiθ ) = −2i sinθ. (20)

In the limit V → ∞, n̄ → ∞, keeping the photon densityρ = n̄/V constant, we obtain
the interaction term

iE(an̄,θ − a†n̄,θ ) −→
√

2ρh̄ω

ε0
sinθ. (21)

We introduce the laser intensity per unit surfaceI

I = 1
2ε0cE

2 = h̄ω8ph (22)
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with the photon velocityc, the field amplitudeE and the photon flow8ph = n̄c/V . This
allows us to identify the interaction constant of equation (21) withE of equation (12) as
E = √2ρh̄ω/ε0. We obtain thus the Floquet HamiltonianK of equation (12).

The formal hypothesis (19) must be interpreted in relation with the functions on which
−i∂/∂θ acts. The statement is that if all the states{|eikθ 〉} that are relevant in the dynamics
are such that|k| � n̄, i.e. if only a few photons are exchanged between light and matter
compared to the average photon numbern̄ contained in the laser field, thenthe dressed
HamiltonianH(n̄)

LM can be identified with the Floquet HamiltonianK.
We give in what follows a more precise formulation of this construction based on

the dynamics of the coupled system. SinceH(n̄)
LM and K are both well defined on

H⊗L2(S1, dθ/2π), we can compare the time evolutions generated by the two Hamiltonians
of any initial stateψ0 ∈ H⊗ L:

Theorem. For N -level models (H = CN ), given any initial stateψ0 ∈ H ⊗ L, there is
convergence of the dynamics

lim
V,n̄→∞
n̄/V=ρ

e−i(H (n̄)
LM /h̄−n̄ω)tψ0 = e−iKt/h̄ψ0. (23)

The detailed statement and the proof of this theorem is given in appendix A.

2.3. Connection with the semiclassical formulation: interaction representation and
coherent states

From the formulation of the Floquet formalism given above, we can establish the
precise connection between the dynamics in the enlarged spaceK defined by the Floquet
HamiltonianK, and the one defined by the semiclassical Hamiltonian inH with a classical
description of the electric field [8]:

The dynamics of the Floquet Hamiltonian inK, whereθ is a dynamical variable, is equivalent,
in the interaction representation, to the semiclassical Schr¨odinger evolution inH, whereθ is
considered as a parameter corresponding to the fixed initial phase, provided that the initial
photon state in the Floquet model is a coherent state.

For other initial states, as, for example, photon-number states, the Floquet model is not
equivalent to the semiclassical model; it contains more structure concerning the photons.

In the enlarged spaceK, the phaseθ of the photons is a quantum-mechanical dynamical
variable. It does not have a sharp value in the photon numbers states for example. The
uncertainty relations between phase and relative photon number are of the same nature as
for the cavity-mode photons, as described in [29] for example. The phase takes a sharp
value only for coherent states, as described in sections 2.3.2 and 2.3.4, which allows us to
make the connection with the semiclassical model.

2.3.1. Interaction representation.The Schr̈odinger equation of the Floquet Hamiltonian
in K

ih̄
∂

∂t
ψ(t) = Kψ(t) (24)

can be expressed equivalently in an interaction representation defined by the unitary
transformation

φ(t) = U †0r(t)ψ(t) (25)
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where

U0r(t) = e−ωt∂/∂θ ≡ T−t (26)

is the free photon-field propagator, which we recognize as being identically the Koopman
operator (6) used in the Floquet construction of section 2.1. Using equation (4), we obtain

φ(t) = Ttψ(t) = TtUK(t − t0, θ)T−t0φ(t0)
= U(t, t0; θ)φ(t0)

and the evolution equation in this representation becomes

ih̄
∂

∂t
φ(t) = H(θ + ωt)φ(t) (27)

whereφ(t) ∈ K, i.e. H(θ + ωt) is still interpreted as an operator acting on the enlarged
Hilbert spaceK, which, with respect to the variableθ , is a multiplication operator.

Although this equation looks formally like the semiclassical Schrödinger equation (2),
we emphasize that it is still different since it is defined in the enlarged Hilbert spaceK and
the phaseθ does not have a definite value, since it is a dynamical variable on the same
footing asx. In order to recover the semiclassical equation from (27) we have to reduce
it to an equation defined in the Hilbert spaceH. This can be achieved, as we show in the
following, by choosing the initial condition of the photon field as a coherent state.

2.3.2. Coherent states in the limitn̄ → ∞. In this section we show that the coherent
states are represented in Floquet theory by a generalized function8θ0(θ), which is real, and
depends onθ − θ0, whereθ0 ∈ S1 is a fixed angle, and

(8θ0(θ))
2 = 2πδ(θ − θ0). (28)

This can be obtained as follows. The photon-field coherent states are eigenvectors of the
annihilation operator

a|α〉 = α|α〉 α = |α|e−iθ0. (29)

In the usual Fock-number state representation they are given, up to a phase factor, by

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (30)

In the phase representation they can be written as

8
(n̄)
θ0
(θ) = eiζe−|α|

2/2
∞∑
n=0

αn√
n!

ei(n−n̄)θ = e−|α|
2/2

∞∑
n=0

|α|n√
n!

ei(n−n̄)(θ−θ0) (31)

(whereζ is an arbitrary constant phase that we have chosen asζ = n̄θ0). In order to obtain
the representation of coherent states in Floquet theory we have to take|α| = √n̄ and then
apply the limit n̄→∞.

This can be rigorously done directly using the representation (31), as we show in
appendix B. Here we discuss an alternative construction that is formal but gives a useful
intuition. We use an approximate expression of the coherent states for largen̄, obtained in
[28], by developing

an̄,θ =
√
n̄e−iθ

√
1− 1

n̄
i
∂

∂θ
 
n̄→∞
√
n̄e−iθ

(
1− 1

2n̄
i
∂

∂θ

)
. (32)
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This leads to the following asymptotic expression [28] for the normalized coherent state
corresponding toα = √n̄e−iθ0, obtained as a solution of e−iθ (1 − i/(2n̄)∂/∂θ)φ(n̄)θ0

=
e−iθ0φ

(n̄)
θ0

:

8
(n̄)
θ0
 
n̄→∞

1

ν
exp{−2n̄[1− cos(θ − θ0)− i(sin(θ − θ0)− (θ − θ0))]} (33)

where the normalization constant is

ν2 = e−4n̄I0(4n̄) (34)

with I0 a Bessel function, which behaves asymptotically as

I0(4n̄) =
∫ 2π

0

dθ

2π
exp(4n̄ cosθ)  

n̄→∞
e4n̄

(8πn̄)1/2
. (35)

Therefore

|8(n̄)
θ0
(θ)|2  

n̄→∞
(8πn̄)1/2 exp{−4n̄[1− cos(θ − θ0)]} (36)

noticing that the function exp{−4n̄[1 − cos(θ − θ0)]} behaves like exp{−2n̄(θ − θ0)
2} for

n̄→∞, we obtain

|8(n̄)
θ0
(θ)|2  

n̄→∞
2πδ(θ − θ0) (37)

whereδ(θ − θ0) is the analogue on the circleS1 of the usual Dirac’s delta function.
We note that since the phase term in (31) (or in (33)) is odd inθ − θ0, we obtain that

8
(n̄)
θ0
(θ)→ 8θ0(θ) with 8θ0(θ) real and

(8
(n̄)
θ0
(θ))2 −→

n̄→∞
2πδ(θ − θ0). (38)

Furthermore, using the well known properties of the expectation values ofNm on coherent
states, we obtain〈

8
(n̄)
θ0
(θ)

∣∣∣∣−i
∂

∂θ

∣∣∣∣8(n̄)
θ0
(θ)

〉
L
= 0 for all n̄ (39)〈

8
(n̄)
θ0
(θ)

∣∣∣∣(−i)m
∂m

∂θm

∣∣∣∣8(n̄)
θ0
(θ)

〉
L
−→
n̄→∞
∞ m > 2. (40)

The subscripts in the scalar product symbols (〈 | 〉L) indicate on which space they act.
We conclude thus that in Floquet theory the photon coherent states are represented by the
‘square root of aδ-function’, that we denote by8θ0(θ) = (2π)1/2δ1/2(θ − θ0). Since we
will be interested in expectation values, only|8θ0|2 will appear in our calculations. In
appendix C we discuss some of the formal calculus rules forδ1/2(θ − θ0).

2.3.3. Expectation values for general initial states of the photon field.For a general initial
condition of the photon fieldξ(θ) ∈ L, we remark that the evolution of the initial condition
ϕ(x) ⊗ ξ(θ) can be obtained from the one with the initial conditionϕ(x) ⊗ 1 (where the
constant function 1≡ ei(k=0)θ is the relative number state of zero photons):

UK(t, θ)(ϕ(x)⊗ ξ(θ)) = T−tU(t, 0; θ)(ϕ(x)⊗ ξ(θ))
= ξ(θ − ωt)U(t, 0; θ − ωt)(ϕ(x)⊗ 1)

= ξ(θ − ωt)UK(t, θ)(ϕ(x)⊗ 1) (41)



Cavity-dressed and Floquet states, RWA, semiclassical models 7201

(sinceU(t, 0; θ) is a multiplication operator with respect toθ ). As a consequence, for any
observableM : K→ K that with respect toθ is a multiplication operator, we can write the
expectation value as

〈M〉(t) := 〈ϕ ⊗ ξ |U †K(t)MUK(t)|ϕ ⊗ ξ〉K
=
∫ 2π

0

dθ

2π
|ξ(θ)|2〈ϕ|U †(t, 0; θ)M(θ + ωt)U(t, 0; θ)|ϕ〉H

=
∫ 2π

0

dθ

2π
|ξ(θ)|2〈ϕ(t; θ)|M(θ + ωt)|ϕ(t; θ)〉H (42)

where we denote byϕ(t; θ) ≡ U(t, 0; θ)ϕ the semiclassical evolution with initial phase
θ of the initial conditionϕ ∈ H. In particular, for an observableA of the molecule (i.e.
A⊗ 1IL) we have

〈A〉(t) =
∫ 2π

0

dθ

2π
|ξ(θ)|2〈ϕ(t; θ)|A|ϕ(t; θ)〉H. (43)

2.3.4. Expectation values on coherent states; relation with the semiclassical model.We
have stated that we can recover evolution of the semiclassical model from the Floquet
evolution in the interaction representation by taking initial states in which the photon field
is in a coherent state. This can be formulated more precisely by the following statements.
If we take an initial condition of the formφ(t = 0) = (2π)1/2ϕ(x)⊗ δ1/2(θ − θ0) then

(i) if A : H→ H is an observable of the molecule, then according to equation (43)

2π〈ϕ ⊗ δ1/2(θ − θ0)|U †K(t)(A⊗ 1IL)UK(t)|ϕ ⊗ δ1/2(θ − θ0)〉K = 〈ϕ(t; θ0)|A|ϕ(t; θ0)〉H.
(44)

The last expression is the expectation value calculated with the semiclassical model with
initial phaseθ0. We conclude thus that the Floquet evolution with a coherent state in the
initial condition is equivalent to the semiclassical model. We note that a somewhat related
construction, linking the evolution from cavity-dressed states directly to the semiclassical
model (i.e. without the intermediate level of Floquet states as we do here) was established
in [10].

(ii) More generally, ifM : K → K is an observable that, with respect toθ , is a
multiplication operator continuous inθ , then taking forθ a particular valueθ0 defines a
family of operatorsM(θ0) : H→ H, parametrized byθ0. Then

2π〈ϕ ⊗ δ1/2(θ − θ0)|U †K(t)MUK(t)|ϕ ⊗ δ1/2(θ − θ0)〉K = 〈ϕ(t; θ0)|M(θ0+ ωt)|ϕ(t; θ0)〉H.
(45)

It was noted in [8, 27] that in the semiclassical model, if the initial phaseθ0 is not
known, one can take a statistical average over the initial phases, with uniform distribution:

Āsc=
∫ 2π

0

dθ0

2π
〈ϕ(t; θ0)|A|ϕ(t; θ0)〉H. (46)

From the discussion above, this coincides with the evolution in the Floquet picture of an
initial condition of the photon field that is a photon-number eigenstate eikθ (with arbitrary
k). We have seen on the other hand that the semiclassical evolution with an initial phase
θ0 corresponds, in the Floquet picture, to a coherent-state initial condition.



7202 S Guérin et al

3. Emission and absorption of photons in Floquet theory

In Floquet theory the exchange of photons can be analysed from the temporal variation of
the relative photon number. In experiments, one measures for instance the difference in
intensity of the laser pulse before and after the interaction with the molecules. We describe
this quantity by

δ〈N〉(t) :=
〈
ϕ ⊗ ξ

∣∣∣∣U †K(t)(−i
∂

∂θ

)
UK(t)

∣∣∣∣ϕ ⊗ ξ〉
K
−
〈
ϕ ⊗ ξ

∣∣∣∣−i
∂

∂θ

∣∣∣∣ϕ ⊗ ξ〉
K

(47)

and we show below that

δ〈N〉(t) =
∫ 2π

0

dθ

2πh̄ω
|ξ(θ)|2[〈ϕ|H(θ)|ϕ〉H − 〈ϕ(t; θ)|H(θ + ωt)|ϕ(t; θ)〉H]. (48)

In particular, if the photon field is initially in a coherent state8θ0(θ) = (2π)1/2δ1/2(θ − θ0),
then

δ〈N〉cs(t) =
〈
ϕ

∣∣∣∣H(θ0)

h̄ω

∣∣∣∣ϕ〉
H
−
〈
ϕ(t; θ0)

∣∣∣∣H(θ0+ ωt)
h̄ω

∣∣∣∣ϕ(t; θ0)

〉
H

(49)

and, if it is initially in a photon-number eigenstate|eikθ 〉,

δ〈N〉(t) =
∫ 2π

0

dθ

2πh̄ω
[〈ϕ|H(θ)|ϕ〉H − 〈ϕ(t; θ)|H(θ + ωt)|ϕ(t; θ)〉H]. (50)

We remark thatδ〈N〉(t) is independent of the particulark we take, in accordance with the
interpretation as the relative photon number.

We can obtain these relations as follows. Using the definition of the quasi-energy
operator (7), we can expressδ〈N〉(t) in terms of quantities that do not involve the derivative
−i∂/∂θ :

δ〈N〉(t) =
〈
ϕ ⊗ ξ

∣∣∣∣U †K(t) Kh̄ωUK(t)
∣∣∣∣ϕ ⊗ ξ〉

K

−
〈
ϕ ⊗ ξ

∣∣∣∣U †K(t)H(θ)h̄ω
UK(t)

∣∣∣∣ϕ ⊗ ξ〉
K
−
〈
ϕ ⊗ ξ

∣∣∣∣−i
∂

∂θ

∣∣∣∣ϕ ⊗ ξ〉
K
. (51)

Using the fact that [K,UK ] = 0, U †KUK = 1I and equation (7), we can write

δ〈N〉(t) =
〈
ϕ ⊗ ξ

∣∣∣∣H(θ)h̄ω

∣∣∣∣ϕ ⊗ ξ〉
K
−
〈
ϕ ⊗ ξ

∣∣∣∣U †K(t)H(θ)h̄ω
UK(t)

∣∣∣∣ϕ ⊗ ξ〉
K

(52)

and since

U
†
K(t, θ)H(θ)UK(t, θ) = U †(t, 0; θ)TtH (θ)T−tU(t, 0; θ)

= U †(t, 0; θ)H(θ + ωt)U(t, 0; θ) (53)

we obtain equation (48).
We can also obtain more precise information on the probabilityP(L, t) thatL photons

are exchanged. If at timet = 0 the photon field is in a photon-number eigenstate eikθ and
ψ(t = 0) = ψ0 = ϕ ⊗ eikθ then the probability that a measurement performed at timet

yields thatL photons have been exchanged, is given by

P(L, t) = 〈UK(t)ψ0|[1IH ⊗ |ei(L+k)θ 〉〈ei(L+k)θ |]| UK(t)ψ0〉K
=
∑
n

|〈ϕn ⊗ ei(k+L)θ |UK(t)(ϕ ⊗ eikθ )〉K|2 (54)

where{ϕn} is an arbitrary basis ofH.
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3.1. Invariance with respect to the choice of the origin of the relative photon number

Due to the relative character of the number operator−i∂/∂θ , all the physical predictions
of the Floquet model must be invariant with respect to a global translation of the relative
photon numbers. We show that this is indeed the case for the properties discussed in the
previous section.

The probabilityP(L, t) is independent of the particular initial photon-number state
chosen, i.e. it is independent ofk since:

UK(t)(ϕ ⊗ eikθ ) = U(t, 0; θ − ωt)(ϕ ⊗ eik(θ−ωt)) (55)

and thus

P(L, t) =
∑
n

|〈ϕn ⊗ eiLθ |UK(t)(ϕ ⊗ 1)〉K|2. (56)

For the average number of exchanged photonsδ〈N〉(t) it is straightforward to verify that
one obtains the same result for the choice of any initial condition of the photon field of the
form

ξ =
∑
k

cke
i(k+m)θ (57)

with arbitrary translationm.

3.2. Algorithmic aspects

From the relation (4), it follows that the information contained in the Floquet evolution
can be obtained from the numerical simulation of the semiclassical model, and vice
versa. Indeed, performing one simulation of the Floquet evolution inK contains the same
information as a family of simulations of the semiclassical model inH for different values
of the initial phaseθ . (A finite numberN of semiclassical simulations corresponds to one
Floquet simulation withN grid points in the discretization ofθ .) A single semiclassical
simulation yields the Floquet evolution corresponding to a photon coherent state in the
initial condition. Extended Hilbert-space techniques of this type have been applied to the
numerical solution of the Schrödinger equation in [33].

4. Structure of the Floquet states; relation with RWA dressed states

The widely used RWA (see e.g. [34, 1]) allows us to obtain an approximation of the solution
of the time-dependent Schrödinger equation analytically for a two-level system driven
periodically (extensions toN -level systems have been developed, under some particular
conditions on the spacings [35] of the levels). In this section we will set ¯h = 1. For a
Hamiltonian of the form

H(θ + ωt) = ω0

2
σz +� sin(θ + ωt)σy (58)

with the Pauli matricesσx, σy, σz, the RWA consists in substituting the interaction
� sin(θ + ωt)σy by

�

2

(
0 e−i(θ+ωt)

ei(θ+ωt) 0

)
.

This comes down to keeping the term oscillating withω and neglecting the term oscillating
with −ω, which produces a counter-rotating correction to the RWA. The RWA is only
justified when the driving frequency is resonant or weakly detuned (i.e.ω ' ω0).
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Furthermore, the RWA gives a good approximation only if the coupling (i.e. the Rabi
frequency�) is small compared with the Bohr frequencyω0. In this sense, the RWA
is a near-resonance, weak-field approximation [1]. Otherwise, nonlinear effects, like the
dynamical Stark effect, destroy the near-resonance property. Once this approximation is
made, the time evolution can be solved explicitly. The idea is to find a unitary time-
dependent transformation (with the same period as the perturbation field) which leads to
an equation with a time-independent Hamiltonian. The point that we want to stress in this
section is that, within the approximations considered above, dressed states of the RWA
Hamiltonian are just approximations of the Floquet states [36, 1]. Floquet states are indeed
well defined for the complete Hamiltonian (58), and they play the same role as the RWA
dressed states, but without the need of approximation. As it was shown by Salzman [15]
finding a unitary operator that transforms the Schrödinger equation with a time-dependent
Hamiltonian into one with a time-independent Hamiltonian is equivalent with the spectral
problem of the Floquet Hamiltonian. In this sense, the Floquet theory can be thought of as
a generalization of the RWA, but without using any approximation.

This connection can be seen from the following alternative interpretation of the quasi-
energy eigenvalue problem [15], which gives information about the general structure of the
spectral elements of the quasi-energy operatorK. We look for a unitary transformation
C(x, θ) : H→ H (θ is treated here as a parameter) to get a time-independent Schrödinger
equation, i.e. such that

UB(t, t0; θ) = C(θ(t))−1U(t, t0; θ)C(θ(t0)) (59)

satisfies

i
∂

∂t
UB(t, 0; θ) = BUB(t, 0; θ) (60)

whereB(x) is a time- andθ -independent operator acting onH. We remark that there
always exists a unitary time-dependent transformation that leads to an equation with a time-
independent Hamiltonian. But here we require specifically that the unitary transformation
C depends on time only through the variableθ(t), i.e. that it is periodic with the same
frequency as the perturbation.

With such a transformation we have

U(t, t0; θ) = C(θ(t))e−iB(t−t0)C(θ(t0))−1 (61)

with

B = C(θ(t))−1H(θ(t))C(θ(t))− iC(θ(t))−1∂C(θ(t))

∂θ(t)

dθ(t)

dt
. (62)

Acting with T−t from the left on equation (61), and withTt0 from the right, we show that
the unitary transformC induces a unitary transform of the quasi-energy operator in the
enlarged spaceK

e−iK(θ)(t−t0) = C(θ)T−te−iB(t−t0)Tt0C(θ)−1. (63)

Thus, finding the spectral elements of e−iK(θ)t in K comes down to determining eigenvalues
and eigenfunctions of the time-independent operatorB in H (denoted respectively byλBm
and9B

m , m ∈ N) and those of the Koopman operatorT−t in L2(S1, dθ/2π), e−ikωt and eikθ ,
k ∈ Z, and then apply the transform (63).

From this we can deduce the general structure of the Floquet states

9m,k(x, θ) = C(x, θ)[eikθ ⊗9B
m(x)] (64)
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and of the quasi-energy spectrum

λm,k = λBm + kω. (65)

For the RWA Hamiltonian, the transformation is

C (θ) =
(

1 0
0 eiθ

)
(66)

which leads to the constant operator (62)B = (ω0− ω)σz/2+�σx/2+ω1I/2, which yields
the RWA dressed states.

5. Adiabatic Floquet theory for the chirped laser field and labelling of the dressed
states

The shape of the pulse and a swept frequency can be modelled by adding into the periodic
Hamiltonian a slow time dependence compared with the period. This can be treated
by adiabatic techniques and Landau–Zener-type formulae to study transitions between
levels. Breueret al [38] have treated the case of a slow time-dependent amplitude. Its
study involves quasi-energy diagrams representing the quasi-energies as a function of the
amplitude. This has been applied successfully to control population transfer to enhance
tunnelling time [39, 40], as well as to interpret a large variety of experiments [41–46]. The
adiabatic Floquet theory for a more general slow time dependence, including a frequency
modulation in addition to the amplitude modulation, has been developed in [4]. The theory
establishes the determining role of an effective frequency driving the dynamics of the system,
and which is the relevant parameter as a function of which one has to study quasi-energy
diagrams. Here we will discuss the use of the relative photon number operatorNr to assign
physical labels to the states in quasi-energy diagrams.

We consider a HamiltonianH [r(t)](θ + ω(t)t) where r(t) represents a set of time-
dependent parameters, not including the swept frequencyω(t). The solution of the time-
dependent Schrödinger equation is related to the propagator associated to an instantaneous
quasi-energy operator which is defined through an effective frequency.

The operatorU is the propagator of the Schr¨odinger equation

ih̄
∂

∂t
U(t, t0; θ) = H [r(t)](θ + ω(t)t)U(t, t0; θ) (67)

if and only if the operatorUK , defined by

UK(t, t0, θ) = T−tU(t, t0; θ)Tt0 (68)

satisfies

ih̄
∂

∂t
UK(t, t0, θ) = K [r(t),ωeff(t)](θ)UK(t, t0, θ) (69)

whereωeff(t) = ω(t)+ ω̇(t)t , Tt is the translation operator which acts onL2(S1, dθ/2π) as
Tt ξ(θ) = ξ(θ + ω(t)t) and

K [r(t),ωeff(t)](θ) = H [r(t)](θ)− ih̄ωeff(t)
∂

∂θ
. (70)

This result is proved as follows. We start with equation (69) which, by differentiation of
(68) and the fact that for anyξ ∈ L

d

dt
(T−t ξ(θ)) = d

dt
ξ(θ − ω(t)t) = −dθ

dt
T−t

∂

∂θ
ξ(θ)

= −(ω + tω̇)T−t ∂
∂θ
ξ(θ) = −ωeffT−t

∂

∂θ
ξ(θ) (71)
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is equivalent to

−ih̄ωeffT−t
∂

∂θ
UTt0 + ih̄T−t

∂

∂t
UTt0 = K [r,ωeff]T−tUT−t0. (72)

or also to,

−ih̄ωeff
∂

∂θ
U + ih̄T−t

∂

∂t
U = TtK [r,ωeff]T−tU

= −ih̄ωeff
∂

∂θ
U + T−tH [r]T−tU (73)

which is identical to the Schrödinger equation:

ih̄
∂

∂t
U(t, t0; θ) = H [r(t)](θ(t))U(t, t0; θ). (74)

The appearance of aneffective instantaneous frequency in the quasi-energy operator
distinguishes our formulation from earlier attempts to treat adiabatic frequency modulation
[38]. Extending the usual adiabatic theorem to the instantaneous Floquet states, one can
formulate under suitable conditions the following adiabatic principle.

If at time t0 the system is an instantaneous Floquet state, then in the adiabatic limit the time
evolutionφ(t) stays for allt in the connected instantaneous Floquet eigenstate:

φ(t) = e−iδm(t)9 [r(t),ωeff(t)]
m (θ + ω(t)t) (75)

where the phaseδm ∈ R is the superposition of the dynamical phase and Berry’s geometric
phase [47].

This formulation leads to the analysis of the quasi-energy operatorK [r,ωeff] (70), which
is evaluated at each (fixed) value of the parametersr andωeff.

The limitation of the adiabatic behaviour occurs around avoided crossings between the
quasi-energy levels, which produce transitions between these levels. This can be calculated
with Landau–Zener formula in an adiabatic regime, in the sense that the subspace generated
by the quasi-energies involved in the avoided crossings has an adiabatic evolution with
respect to the other states.

We can calculate the average ofNr = −i∂/∂θ in a Floquet state9n by differentiating:

∂λn

∂ωeff
= ∂

∂ωeff
〈9n|K|9n〉K

=
〈
9n

∣∣∣∣−ih̄
∂

∂θ

∣∣∣∣9n〉
K
+
〈
∂9n

∂ωeff

∣∣∣∣K∣∣∣∣9n〉
K
+
〈
9n

∣∣∣∣K∣∣∣∣ ∂9n∂ωeff

〉
K

using the fact thatH(θ) does not depend onωeff. From the relation〈9n|9n〉 = 1, we
deduce 〈

∂9n

∂ωeff

∣∣∣∣K∣∣∣∣9n〉
K
+
〈
9n

∣∣∣∣K∣∣∣∣ ∂9n∂ωeff

〉
K
= λn

(
∂

∂ωeff
〈9n|9n〉

)
= 0 (76)

which finally gives the identity

〈9n|Nr|9n〉K = 1

h̄

∂λn

∂ωeff
. (77)

This gives the general behaviour of the quasi-energy diagram as a function of the effective
frequency: the quasi-energy diagram as a function of the effective frequency is essentially
composed of straight lines, except where the quasi-energies form avoided crossings at which
there are transitions between the levels.
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This can be seen, for example, on a quasi-energy diagram for a three-level ladder system
[2]. We justify this property using the physical interpretation of the relative photon number
operator applied to the relation (77): far from any avoided crossing, no transition occurs,
i.e. there is no variation of the average relative photon number in a given Floquet state:
∂λn/∂ωeff is constant, i.e.λn(ωeff) is a straight line. This implies the exchange of slope of
the two quasi-energies around an avoided crossing. Instead of labelling the quasi-energies
by continuity as it is usually done (e.g. to apply the Landau–Zener formula), we can label
them with respect to their slope, which reflects the effective transition that takes place
between the quasi-energies at the avoided crossings.
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Appendix A. Proof of the convergence from cavity to Floquet dynamics

In this appendix, we will show that in the limit when the mean number of photons tends
to infinity, while keeping their density constant, the dressed energy operator is equal to the
Floquet Hamiltonian. To keep the argument simple, we will treat only the caseH = CN .
As it can readily be seen from the proofs, all the statements below remain valid ifµ and
H0 are merely bounded symmetric operators on a Hilbert spaceH.

To simplify the notation, we will let ¯h = 1 and use the following:

Vn̄ = −i
E√
n̄

(
e−iθ

√
n̄− i

∂

∂θ
−
√
n̄− i

∂

∂θ
eiθ

)
Pn̄

V = −2E sinθ

K0 = −1I⊗ iω
∂

∂θ
+H0⊗ 1I

Hn̄ := H(n̄)
LM − ωn̄ = −1I⊗ iω

∂

∂θ
Pn̄ +H0⊗ Pn̄ + µ⊗ Vn̄ =: K0Pn̄ +Wn̄

K = −1I⊗ iω
∂

∂θ
+H0⊗ 1I+ µ⊗ V =: K0+W

(A1)

where we have denoted byPn̄ =
∑

k>−n̄ |eikθ 〉〈eikθ | the eigenprojection of−i∂/∂θ on the
eigenspace of Fourier modes> −n̄. Our aim is to prove the following result, which shows
that the evolutions associated toK andHn̄ are equal in the limit̄n→∞.

Theorem A1.Let H0 andµ be symmetric matrices (or bounded self adjoint operators) on
H. Then, e−itHn̄ converges strongly to e−itK for all t ∈ R, as n̄ −→∞, i.e.

e−itHn̄ψ −→ e−itKψ for all ψ ∈ K = H⊗ L2(S1, dθ/2π). (A2)

Note that this is the best one can hope for the kind of problems we are concerned with,
as the convergence cannot be uniform.

The idea of the proof is rather straightfoward and simple. We will show that it is
sufficient to verify thatHn̄ψ converges toKψ for all vectorsψ of the formϕ ⊗ eikθ with
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ϕ ∈ H, to insure that the corresponding evolutions are identical in the limit. This is a
simple consequence of the fact that, providedn̄ > −k:

Hn̄ϕ ⊗ eikθ = K0ϕ ⊗ eikθ − iE(µϕ)⊗
(√

1+ k
n̄

e−iθ −
√

1+ k + 1

n̄
eiθ

)
eikθ . (A3)

However, to prove theorem A1, we have to deal with unbounded operators for
which one always needs to be cautious, as it is necessary to deal with problems related
to the domain of the operator and notions of generalized convergence. The questions
associated to convergence can be discussed by considering a set of bounded functions of
the unbounded self adjoint operators involved in the limit procedure. Natural families of
such bounded functions are given by ‘propagators’{ut (x) = eitx; t ∈ R} and ‘resolvents’
{rz(x) = (x − z)−1; =mz 6= 0}.

In the proof, we will need several classical results in operator theory that can be found
in the series of Reed and Simon [48] or in the book of Kato [49]. For the convenience of
the reader we will, however, state those results when needed.

First, recall that domT , the domain of an (unbounded) operatorT , is the set where
it has been defined. By definition,ψ ∈ domT implies that‖T ψ‖ < ∞. An operatorS
is said to be anextensionof an operatorT , if domT ⊂ domS and Sψ = T ψ for each
ψ ∈ domT . This will be denoted byT ⊂ S.

The notion of general convergence we will use is the following. A sequence of self
adjoint operators{Tn} is said toconverge strongly in the resolvent senseto a self adjoint
operatorT , if for any z with =mz 6= 0, the sequence(Tn− z)−1ψ converges to(T − z)−1ψ

for all vectorsψ . The most natural convergence for our problem would have been to
directly consider the propagators. But, the chosen one allows us to rely on the results found
in [48]. In fact, these two kinds of convergence are equivalent, as shown by the following
result due to Trotter [48, theorem VIII.21, p 287].

Theorem A2 (Trotter).Let {Tn} and T be self adjoint operators. ThenTn −→ T in the
strong resolvent sense if and only if eitTn converges strongly to eitT for eacht .

In order to prove the convergence ofHn̄ to K in the strong resolvent sense, we need
to introduce the notion of essential self adjointedness. First, recall that an operatorT is
said to beclosed, if it satisfies the following property: if{ψn} ⊂ domT converge toψ and
if T ψn −→ ϕ, then this implies thatψ ∈ domT andϕ = T ψ . An operatorT is called
closable, if it admits a closed extension. Theclosureof a closable operator is the smallest
closed extention of this operator (which exists by hypothesis).

If T has a dense domain, we can define itsadjoint T † by

〈T †ψ |ϕ〉 = 〈ψ |T ϕ〉 for all ϕ ∈ domT (A4)

and its domain domT † is the set of vectorsψ such that there exists a constantC = Cψ
with |〈ψ |T ϕ〉| 6 C‖ϕ‖, for all ϕ ∈ domT . It can be proven thatT † is always closed (see
[48, theorem VIII.1, p 252]).

A symmetricoperatorT is an operator satisfyingT ⊂ T †, and hence it is closable. An
operator is calledself adjoint, if it is equal to its adjoint. This implies in particular that
their domains are equal. A symmetric operator isessentially self adjoint, if its closure is
self adjoint. In general, it is very difficult to prove that a symmetric operator is self adjoint,
as the domain of a self adjoint operator is not easy to find. So one deals with symmetric
operators and tries to prove that they are essentially self adjoint.

The basic criterion for essential self adjointness is the corollary following theorem VIII.3
in [48, p 257].
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Proposition A3.Let T be a symmetric operator. Then the following are equivalent:
(a) T is essentially self adjoint;
(b) kernel(T † ± i) = {0};
(c) range(T ± i) are dense.

As a useful illustration of this result, we will prove the following.

Lemma A4.A symmetric operatorT having a total set of eigenvectors is essentially self
adjoint on the set of all finite linear combinations of its eigenvectors.

Indeed, by symmetry all the eigenvaluesλj of T are real, hence the set{(T ± i)ϕn =
(λn ± i)ϕn 6= 0 is total, which implies that the finite linear combinations are dense in the
Hilbert space.

The next result is a reformulation of [48, theorem VIII.25, p 292], which shows that it
is sufficient to prove that a sequence of self adjoint operators converges strongly to a self
adjoint operatorT on a setD on which there are all essentially self adjoint†.

Theorem A5.Let {Tn} and T be essentially self adjoint on a common domainD. If
Tnϕ −→ T ϕ for eachϕ ∈ D, thenTn −→ T in the strong resolvent sense.

In order to use this result, we need to show thatHn̄ andK are essentially self adjoint
on a common domain. This domain will be the set of finite linear combinations of simple
tensors of the formϕ ⊗ eikθ :

D =
{∑

finite

aϕ ⊗ eikθ ;ϕ ∈ H
}
. (A5)

We first have to deal with the tensorial form of the operators involved. We can use the
corollary following theorem VIII.33 in [48, p 301].

Proposition A6.Let T1, . . . , TN be self adjoint operators onH1, . . . ,HN and suppose that
for each k, Dk is a domain of essential self adjointness forTk. Then, the operators
T1⊗ . . .⊗ TN andT1⊗ 1I⊗ . . .⊗ 1I+ . . .+ 1I⊗ . . .⊗ 1I⊗ Tn are essentially self adjoint on
D = ⊗Nk=1Dk, the set of finite linear combinations of simple tensors.

This proposition shows thatH0 ⊗ Pn̄, H0 ⊗ 1I and−1I ⊗ iω∂/∂θ are essentially self
adjoint onD and hence they are in particular symmetric.

Next, to prove thatHn̄ andK are indeed essentially self adjoint onD, we will need the
following result that can be found in [49, chapter V.4, theorem 4.6, p 289].

Theorem A7.Let T be essentially self adjoint and letA be symmetric. IfA satisfies

‖Aψ‖2 6 a2‖ψ‖2+ b2‖T ψ‖2 for all ψ ∈ domT (A6)

with b 6 1, thenT + A is essentially self adjoint on domT .
Operators satisfying (A6) are saidT -bounded, with relativeT -boundb 6 1.

H0⊗ Pn̄, H0⊗ 1I andW = −2Eµ⊗ sinθ being a bounded operator, they satisfy (A6)
with b = 0 with respect to any essentially self adjoint operator. This proves thatK is
essentially self adjoint onD. It remains to see that

Wn̄ = µ⊗ Vn̄ = −iµ⊗ E√
n̄

(
e−iθ

√
n̄− i

∂

∂θ
−
√
n̄− i

∂

∂θ
eiθ

)
Pn̄ (A7)

† For the reformulation, see the definition of acore in [48, chapter VIII.2, p 256].
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is −1I ⊗ iω∂/∂θPn̄-bounded with relatively bound6 1 on the setD, as we can then add
the bounded operatorH0⊗ Pn̄ without changing this quality. First, note that

Vn̄e
ikθ = −i

E√
n̄

(√
n̄+ ke−iθ −√n̄+ k + 1eiθ

)
Pn̄e

ikθ for any k. (A8)

Using the fact thatWn̄ = µ⊗Vn̄ can be written as(µ⊗1I)(1I⊗Vn̄) and that the multiplication
by e±iθ is an unitary operator onK, we have for any vector

∑
ϕk ⊗ eikθ in D that†,∥∥∥∥Wn̄

∑
ϕk ⊗ eikθ

∥∥∥∥2

6 E2

n̄
‖µ‖2

∥∥∥∥∑ϕk ⊗
√
n̄+ ke−iθPn̄e

ikθ

−
∑

ϕk ⊗
√
n̄+ k + 1eiθPn̄e

ikθ

∥∥∥∥2

6 2
E2

n̄
‖µ‖2

(∥∥∥∥∑ϕk ⊗
√
n̄+ kPn̄eikθ

∥∥∥∥2

+
∥∥∥∥∑ϕk ⊗

√
n̄+ k + 1Pn̄e

ikθ

∥∥∥∥2)
.

(A9)

The vectors{ϕk ⊗ eikθ }k being mutually orthogonal inK, we can use Pythagoras’ theorem
to obtain, denotingc = 2E2‖µ‖2,∥∥∥∥Wn̄

∑
ϕk ⊗ eikθ

∥∥∥∥2

6
∑

c

(
2+ 1

n̄

)
‖ϕk ⊗ Pn̄eikθ‖2+ 2

c

n̄
|k|‖ϕk ⊗ Pn̄eikθ‖2

6
∑

c

(
2+ 1

n̄
+ c

ω2

)
‖ϕk ⊗ eikθ‖2+ ω

2k2

n̄2
‖ϕk ⊗ Pn̄eikθ‖2

= c
(

2+ 1

n̄
+ c

ω2

)∥∥∥∥∑ϕk ⊗ eikθ

∥∥∥∥2

+ 1

n̄2

∥∥∥∥(−1I⊗ iω
∂

∂θ
Pn̄

)∑
ϕk ⊗ eikθ

∥∥∥∥2

(A10)

where we have used that 2c|k|/n̄ 6 c2/ω2 + k2ω2/n̄2. Theorem A6 allows us to conclude
thatHn̄ is essentially self adjoint onD. This completes the proof of theorem A1, as we
have already shown thatHn̄ϕ ⊗ eikθ −→ Kϕ ⊗ eikθ for all ϕ ∈ H and k ∈ Z and as this
convergence can be extended to the whole ofD by linearity.

Appendix B. The n̄→∞ limit of coherent states

In this appendix we prove that coherent states

|α〉 = 8(n̄)
θ0
(θ) = e−|α|

2/2
∞∑
n=0

|α|n√
n!

ei(n−n̄)(θ−θ0) (B11)

with α = |α|e−iθ0, are represented in Floquet theory, i.e. in the limit|α| = √n̄→∞, by a
generalized function8θ0(θ), which is real, depends onθ − θ0, and

(8θ0(θ))
2 = 2πδ(θ − θ0). (B12)

We prove this by showing that for any sufficiently smooth functionf (θ) ∈ L =
L2(S1, dθ/2π),

lim
|α|→∞

〈α|f (θ)|α〉L = f (θ0) (B13)

† Note that any vector inD can be written as such a sum.
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and noting that forθ = θ0 the coherent state (B11) is real. It is enough to prove that for
any k ∈ Z

lim
|α|→∞

〈α|eikθ |α〉L = eikθ0. (B14)

We can write

〈α|eikθ |α〉L = e−|α|
2
∞∑

n,n′=0

|α|n+n′√
n!n′!

e−i(n−n′)θ0

∫ 2π

0

dθ

2π
ei(n+k−n′)θ

= eikθ0e−|α|
2
∞∑
n=0

|α|2n+|k|√
n!(n+ |k|)! (B15)

where we have first exchanged the integral and the sum (since the sum is absolutely
convergent), and then used∫ 2π

0

dθ

2π
exp(i(n+ k − n′)θ) = δk,n′−n.

The result follows thus from the

Lemma B1.For k > 0, the function

G(z) := e−z
∞∑
n=0

zn+k/2√
n!(n+ k)! (B16)

satisfies

lim
z→∞G(z) = 1. (B17)

Proof. This result can be obtained by generalizing an argument used in [29]. We first
remark that

√
n!(n+ k)! = n!

√
(n+ k)(n+ k − 1) . . . (n+ 1) and use for each of the

factors the identity

1

(n+ j)s+1
= 1

0(s + 1)

∫ ∞
0

dt t se−(n+j)t (B18)

(which is just the definition of the0-function) for s = −1/2. Using0(1/2) = π1/2 we can
thus write

((n+ k) . . . (n+ 1))−1/2 = π−k/2
∫ ∞

0
dt1 . . .

∫ ∞
0

dtk
k∏

j=1

t
−1/2
j exp

(
−

k∑
j=1

(n+ j)tj
)

(B19)

and therefore

G(z) = π−k/2zk/2e−z
∫ ∞

0
dt1 . . .

∫ ∞
0

dtk
k∏

j=1

t
−1/2
j exp

(
−

k∑
j=1

j tj

)

×
∞∑
n=0

zn

n!

(
exp

(
−

k∑
j=1

tj

))n
. (B20)

The last sum is equal to exp(z exp(−∑k
j=1 tj )).
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Making the change of variables exp(−tj ) = 1− xj/z, we obtain

G(z) = π−k/2zk/2e−z
∫ z

0
dx1 . . .

∫ z

0
dxk z

−k exp

(
z

k∏
j=1

(1− xj/z)
)

×
k∏

j=1

[
ln

1

1− xj/z
]−1/2

(1− xj/z)j−1

= π−k/2
∫ ∞

0
dx1 . . .

∫ ∞
0

dxk exp

(
− z

(
1−

k∏
j=1

(1− xj/z)
))

×
k∏

j=1

χ[0;z](xj )z
−1/2

[
ln

1

1− xj/z
]−1/2

(1− xj/z)j−1

= π−k/2
∫ ∞

0
dx1 . . .

∫ ∞
0

dxk fz(x1, . . . , xk) (B21)

whereχ[0;z](x) represents the characteristic function of the interval [0; z]. �
To prove lemma B1, we will use the theorem of dominated convergence of Lebesgue

[50], a simplified version of which can be stated as follows.

Theorem B2.Let {fn} be a sequence of absolutely integrable functions over a subsetX of
Rk which converge pointwise for almost all points to a functionf . Suppose that there exists
a positive and integrable functiong such that|f (x)| 6 g(x) for almost everyx. Thenf is
integrable and

lim
n→∞

∫
X

|fn − f |dkx = 0 and lim
n→∞

∫
X

fn dkx =
∫
X

f dkx. (B22)

Note that instead of the limitz → ∞ in (B17), we can consider this limit on any
sequence tending to+∞†.

Assuming that we have found a suitable functiong(x1, . . . , xk) that bounds the integrand
fz(x1, . . . , xk) of G(z), the argument proceeds simply as follows. First, note that we have

lim
z→∞exp

(
− z

(
1−

k∏
j=1

(1− xj/z)
))
= exp

(
−

k∑
j=1

xj

)
. (B23)

This can easily be seen by developing the product in the argument of the exponential. Next,
for eachj > 1, we have that

lim
z→∞ z

−1/2

[
ln

1

1− xj/z
]−1/2

(1− xj/z)j−1 = x−1/2
j . (B24)

To obtain this result, we can take the square of this function and then use de l’Hospital’s
rule. Finally the limit of the characteristic function is simply the constant 1. Hence we
have shown that

lim
z→∞fz(x1, . . . , xk) =

∞∏
j=1

x
−1/2
j exp(−xj ) on (0;∞). (B25)

Therefore, by theorem B2, we have

lim
z→∞G(z) = π

−k/2
k∏

j=1

∫ ∞
0

dxj x
−1/2
j exp(−xj ) = π−k/20(1/2)k = 1. (B26)

† In fact, as it can readily be seen, the arguments below are actually independent of the choosen sequence.
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To conclude the proof, it remains to show the existence of the bounding functiong. We
will bound each factor infz separately. First, notice thatfz is a positive function. Next,
we have

(1− xj/z)j−1χ[0;z](xj ) 6 1. (B27)

Using the inequalityy 6 − ln(1− y) which is valid in 06 y < 1, we find that

z−1/2

[
ln

1

1− xj/z
]−1/2

6 x−1/2
j for 0< xj 6 z. (B28)

Finally, we have in the interval 06 xj 6 z,

exp

(
− z

(
1−

k∏
j=1

(1− xj/z)
))
6 exp

(
− 1

k

k∑
j=1

xj

)
. (B29)

Indeed, taking the logarithm and denotingyj = xj/z, we see that this inequality is equivalent
to

1−
k∏

j=1

(1− yj ) > 1

k

k∑
j=1

yj for 06 yj 6 1. (B30)

This inequality follows directly from the fact that (identifying 1− yj with sj )

k∏
j=1

sj 6
( k∏
j=1

sj

)1
k

6 1

k

k∑
j=1

sj for 06 sj 6 1. (B31)

The first inequality is true because eachsj belongs to the interval [0; 1], and the second
follows from the fact that a geometric mean is always less than or equal to an arithmetic
mean†. Thus, we have shown that

06 fz(x1, . . . , xk) 6 exp

(
− 1

k

k∑
j=1

xj

) ∞∏
j=1

x
−1/2
j =: g(x1, . . . , xk). (B32)

Now, the bounding functiong is integrable, since∫ ∞
0

dx1 . . .

∫ ∞
0

dxk g(x1, . . . , xk) =
(∫ ∞

0
x−1/2e−x/k dx

)k
= (πk)k/2 <∞ (B33)

which completes the proof.

Appendix C. The formal calculus of δ1/2(θ − θ0)

Since the origin of theδ1/2 function is

|8θ0(θ)|  
n̄→∞

(8π)1/4n̄1/4 exp{−2n̄[1− cos(θ − θ0)]}

 
n̄→∞

(2π)1/2
(2n̄)1/4

π1/4
e−n̄(θ−θ0)

2

−→
n̄→∞

(2π)1/2δ1/2(θ − θ0) (C34)

we can establish the following formal calculus rules:
(1)

(δ1/2(θ − θ0))
2 = δ(θ − θ0). (C35)

† This can easily be shown by using the concavity of the function ln(x).
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(2) If θ 6= θ0

δ1/2(θ − θ0) = 0. (C36)

(3) For anyξ ∈ L
δ1/2(θ − θ0)ξ(θ) = δ1/2(θ − θ0)ξ(θ0). (C37)

(4)

2π〈δ1/2(θ − θ0)|δ1/2(θ − θ0)〉L = 1. (C38)

(5) For anyξ ∈ L
〈δ1/2(θ − θ0)|ξ(θ)〉L = 0. (C39)

(6) For any observableF : L→ L that is a continuous function ofθ ,

2π〈δ1/2(θ − θ0)|F(θ)|δ1/2(θ − θ0)〉L = F(θ0). (C40)

(7) By equation (39), we obtain〈
δ1/2(θ − θ0)

∣∣∣∣−i
∂

∂θ

∣∣∣∣ δ1/2(θ − θ0)

〉
L
= 0. (C41)

(8) If ϕ ∈ H andM : K→ K is an observable that with respect toθ is a multiplication
operator, continuous inθ , then taking forθ a particular valueθ0 defines a family of operators
M(θ0) : H→ H, parametrized byθ0. Then

2π〈ϕ ⊗ δ1/2(θ − θ0)|M(θ)|ϕ ⊗ δ1/2(θ − θ0)〉K = 〈ϕ|M(θ0)|ϕ〉H. (C42)

We remark thatδ1/2(θ − θ0) can be interpreted as a linear functional on the space of
continuous observablesF = F † : L→ L by

δ1/2,θ0 : F 7→ 〈δ1/2(θ − θ0)|F(θ)|δ1/2(θ − θ0)〉L. (C43)
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